Check for
updates

R DIGITAL Assacition for
acvgel® 155 ARy T @mopen}
£ Latest updates: https://dl.acm.org/doi/10.1145/3488375

SURVEY
Network Traffic Generation: A Survey and Methodology

OLUWAMAYOWA ADE ADELEKE, University of Houston, Houston, TX,
United States

NICHOLAS BASTIN, University of Houston, Houston, TX, United States
DENIZ GURKAN, University of Houston, Houston, TX, United States

Open Access Support provided by:

University of Houston

PDF Download
}3 3488375.pdf
. 29 January 2026

Total Citations: 34
Total Downloads:
4080

Published: 18 January 2022
Accepted: 01 September 2021
Revised: 01 June 2021
Received: 01 October 2020

Citation in BibTeX format

ACM Computing Surveys (CSUR), Volume 55, Issue 2 (February 2023)

https://doi.org/10.1145/3488375

EISSN: 1557-7341

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3488375
https://dl.acm.org/doi/10.1145/3488375
https://dl.acm.org/doi/10.1145/contrib-99659957121
https://dl.acm.org/doi/10.1145/institution-60005837
https://dl.acm.org/doi/10.1145/institution-60005837
https://dl.acm.org/doi/10.1145/contrib-88158883457
https://dl.acm.org/doi/10.1145/institution-60005837
https://dl.acm.org/doi/10.1145/contrib-81361604806
https://dl.acm.org/doi/10.1145/institution-60005837
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60005837
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3488375&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3488375&domain=pdf&date_stamp=2022-01-18

Network Traffic Generation: A Survey and Methodology

OLUWAMAYOWA ADE ADELEKE, NICHOLAS BASTIN, and DENIZ GURKAN,

University of Houston

Network traffic workloads are widely utilized in applied research to verify correctness and to measure the
impact of novel algorithms, protocols, and network functions. We provide a comprehensive survey of traffic
generators referenced by researchers over the last 13 years, providing in-depth classification of the functional
behaviors of the most frequently cited generators. These classifications are then used as a critical component
of a methodology presented to aid in the selection of generators derived from the workload requirements of
future research.

CCS Concepts: « Networks — Network experimentation; Network performance analysis; Network
measurement;

Additional Key Words and Phrases: Network, packet, traffic, workload, generator, experiment, survey, analysis

ACM Reference format:

Oluwamayowa Ade Adeleke, Nicholas Bastin, and Deniz Gurkan. 2022. Network Traffic Generation: A Survey
and Methodology. ACM Comput. Surv. 55, 2, Article 28 (January 2022), 23 pages.
https://doi.org/10.1145/3488375

1 INTRODUCTION

The internet has become ubiquitous. Although it started as a small network with wired connections
between 4 computers in 4 universities in the western part of the USA, it has evolved into a massive
web with over 18 billion networked devices and over 3.9 billion users as of 2018, according to the
Cisco Annual Internet Report [39]. The implication is that nearly half of the population of the
world uses internet based services on a daily basis, and numbers continue to increase every day.
This sustained increase in the internet size and utility continues to ride on the tireless work of
researchers in the field of computer networks and distributed computing,.

Over the last decade, there has been significant research output from academia in the field of
computer networks as a result of the advent of software defined networking (SDN) and net-
work function virtualization (NFV). In-depth research experiments with network topologies
that resemble production networks in terms of the number and diversity of nodes and links have
become considerably more accessible. Consequently, more sophisticated requirements arise on
traffic workloads in order to provide a realistic testing environment. Since actual production traffic

This work is funded in part by the National Science Foundation (NSF) Division of Computer and Network Systems (CNS)
core grant award no. 1908974.

Authors’ address: O. A. Adeleke, N. Bastin, and D. Gurkan, University of Houston, 4730 Calhoun Rd, Houston, Texas, 77204;
emails: {oaadeleke, nbastin, dgurkan}@uh.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

0360-0300/2022/01-ART28 $15.00

https://doi.org/10.1145/3488375

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

https://doi.org/10.1145/3488375
mailto:permissions@acm.org
https://doi.org/10.1145/3488375

28:2 O. A. Adeleke et al.

traces are almost never available to academic researchers due to privacy policies [127], a plethora
of traffic generators are utilized in network science and engineering research. Even when privacy
policies are not an issue [53, 95, 124], the logistical hurdles of scaling an existing production traffic
capture into a testbed can be daunting. Furthermore, the effective replay of existing traffic traces
only enables very specific research experiments where the local topology matches the exact graph
of the network where the packets were originally captured. In essence, the capability to replay
such traces becomes considerably limited on network topologies that differ significantly from the
original capture network. Therefore, researchers have to resort to alternative methods for creating
traffic workloads for their experiments, and one of the most popular options is the use of traffic
generators. This article presents a survey on traffic generation methods and a selection methodol-
ogy for traffic generators to match experiment objectives in applied research.

We present a comprehensive survey of network traffic generators in academia and industry. Un-
like existing traffic generator surveys [48, 86, 101], our objective is not a performance comparison,
rather a determination of the functional behaviors. The performance of traffic generators has been
studied extensively in the literature, and our survey focuses on the types of variances and func-
tionality of the available traffic generators even though it is possible that they could be run in a
high-performance setting with the support of hardware platforms and techniques guaranteeing a
wire-speed generation capability. In fact, most generators in our analysis are software programs
that are vulnerable to the limitations of the runtime environment and the hardware systems. Our
goal is to analyze available characteristics and features of commonly preferred tools, provide a
structured digest of our compilations on these features, and then to present a systematic method-
ology to pick suitable generators for individualized research goals.

We first present our survey of traffic generators and their usage in a comprehensive set of pub-
lications in the top ACM and USENIX conferences where we collect information on the usage
frequency of a traffic generation method of any kind. (IEEE publications were not included in our
corpus as the API to pull papers from the IEEE database made it difficult to perform extensive
downloads of a large number of papers.) We compile over 90 traffic generators used in academia
and industry. For each one, we attempt to obtain the binaries or the source code and then study
available documentation or reference papers. We then categorize the generators into a taxonomy
based on what kind of traffic they are able to generate. Afterward, based on the usage scenarios
in papers from prestigious networking research conferences over the last 13 years (over 7,000 pa-
pers), we rank them per popularity using our custom built analysis tool [105]. The top 10 of these
generators are analyzed in more detail for their individual features.

The article is organized to cover the analysis of the survey results first in Section 2. The next
section is on the classification of traffic generation tools. We then present the top 10 popular traffic
generators, their features, and a process for traffic generator selection in Section 4. In Section 5,
we provide an overview of existing surveys in the literature and finally, we conclude in Section 6.

2 SURVEY OF TRAFFIC GENERATORS AND THEIR USAGE IN RESEARCH

In this section, we provide a comprehensive list of traffic generators (Section 2.1), and we provide
results of analysis of tool popularity in Section 2.2. We assembled an exhaustive list of network
traffic generators used across research and industry, finding 92 traffic generators created between
1995 and 2018. Our list of traffic generators was sourced from computer networking research pa-
pers (over 7,000 papers in [120, 121]) and general internet document searches [90, 108, 126, 135].

2.1 List of Traffic Generators

The Table 1 below lists all 92 traffic generators we considered in this survey. We have included
the information on licensing, software maintenance status, supported operating systems, the

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

Network Traffic Generation: A Survey and Methodology 28:3

generation category as outlined in the taxonomy Section 3, and the best available web link to
get further information about each traffic generator. The generators in the table have been listed
in descending order of popularity based on our findings in the Section 2.2.

2.2 Tool Popularity

We collected the 92 traffic generators listed in the Table 1 based on their usage in papers published
over a 13 year period (from 2006 to 2018). We started at 2006 to capture traffic generators usage
trends beginning from the early days of virtualization and software defined networking. Using our
custom built analysis tool [105] we examined a total of 7,479 computer networking related papers,
including 2,856 papers published in various conferences and journals by the Association for Com-
puting Machinery’s (ACM) Special Interest Group on Data Communications (SIGCOMM) [120].
The ACM conferences we explored include ACM-ICN [64], AllThingsCellular [66], ANRW [69],
APNet [72], CHANTS [57], Cnet [41], GreenNets [63], HomeNets [61], HotNets [62], HotSDN
[65], IoTS&P [70], LANCOMM [68], MECOMM [71], MobiArch [54], NetAlI [56], NetEcon [60],
NSEthics [67], NSDR [59], SIGCOMM [58], SOSR [55], and 43 others. The remaining 4,623 papers
were published in various conference proceedings and journals of the Advanced Computing Sys-
tems Association (USENIX) computer networking related conferences [121] between the years
2006 to 2018. The conferences we explored include the ATC [10], APSys [20], CoolDC [24], CSET
[17], EVT [9], FOCI [22], HotCloud [19], HotEdge [25], HotSec [7], IPTPS [18], LISA [8], NetDB
[14], NSDI [12], ONS [23], OSDI [13], Security [11], SRUTI [6], SustainIT [6], SysML [16], WASL
[15], WebApps [21], and 37 others. We could not include any of the Institute of Electrical and Elec-
tronics Engineers (IEEE) papers in the analysis because the API of the IEEE digital library made it
difficult to perform extensive downloads of a large number of papers.

We conducted a detailed n-gram analysis of all 7,000+ papers. First, we created a list of
terms/phrases that uniquely describe each identified generator, collected from a sample of refer-
enced papers. For example, search terms for the DPDK packet generator included “dpdk pktgen”,
“pktgen dpdk”, “dpdk packet generator”, “dpdk generator”, “dpdk based packet generator”, and
“dpdk based generator”. We then created n-gram indices with n = 1 to 5, from the raw text of the
entire corpus of selected papers. We searched these indices to locate matches of the traffic gener-
ator terms/phrases across the entire set of papers. For each match, we ran a script that captured
the surrounding sentences for the location of the match, which resulted in about 1,800+ papers.
We manually examined the sentences for each match in order to determine whether the generator
was actually used, cited, or just merely mentioned in the article. Based on the surrounding text
we were also able to identify and exclude cases where the search terms in the article was found to
refer to something other than the traffic generation context. The scripts that we wrote and used
for the search and analysis of papers is open source and made publicly available online [105].

The result of the analysis is a set of traffic generators and the associated lists of papers where the
generators are used, cited, and mentioned. Based on the result, we rank the generators and select
the top 10 based on their usage popularity in the last 13 years for further examination. The top 10
list consists of: iperf2 [99], netperf [78], httperf [102], moongen [47], scapy [33], Llinux pktgen
[109], netcat [76], TCPreplay [5], iperf3 [91], and DPDK pktgen [149] in descending order of
usage. Figure 1 gives the details of the results of this analysis, and we recall that Table 1 gives the
complete list of traffic generators in descending order of usage. All top 10 traffic generators are
open source [111], and they are all software-based generators.

The usage reference of each of these generators is given in Figure 2 per year from 2006 to 2018.
Based on the results, constant/max throughput traffic generators—particularly iperf2 [138]—
continue to dominate in terms of usage. More recently developed realistic traffic generators that
are based on stochastic models, e.g., swing, DITG, and so on, are not cited as frequently as the

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

28:4

O. A. Adeleke et al.

Table 1. Status of Traffic Generators in Research and Industry as of Jan 2021. Generators Sorted on

Descending Order of Popularity Per Section 2.2

D Name License Status Date Platform® Category Link (Source, Binaries, Paper)
1 iPerf2 [99] BSD 2019-01 All CMT? https:
//sourceforge.net/projects/iperf2/
2 Netperf [78] Free!l 2018-06 All CMT? https:
//hewlettpackard.github.io/netperf/
3 httperf [102] GPLv2 2018-11 All App level https://github.com/httperf/httperf
gen
4 moongen [47] MIT 2018-12 Unix, Script https:
Linux driven //github.com/emmericp/MoonGen
5 scapy [33] GPLv2 2019-01 All Script http:
driven //www.secdev.org/projects/scapy/
6 Linux pktgen GPLv1l 2018-09 linux Script https://github.com/torvalds/linux/
[109] driven blob/master/net/core/pktgen.c
7 netcat [76] 2019-01 All Other® http://nc110.sourceforge.net/
8 iperf3 [91] BSD-3- 2018-12 All CMT? https://github.com/esnet/iperf
Clause
9 TCPreplay [5] GPLv3 2018-12 All Traffic http://tcpreplay.appneta.com/
replay
10 DPDK pktgen BSD 2019-01 Unix, Script https://pktgen-
[149] Linux driven dpdk.readthedocs.io/en/latest/
11 Harpoon [132] GPLv2 2018-01 Unix, Trace https:
Linux driven //github.com/jsommers/harpoon
12 D-ITG [27] GPLv3 2013-03 All Model http:
based //www.grid.unina.it/software/ITG/
13 TMIX [148] MIT 2011-11 NS2 or Other® https://github.com/weiglemc/tmix-
NS3 ns2
14 Nuttcp [51] GPLv2 2018-07 All CMT https://www.nuttcp.net/
15 SWING [143] Free! 2008-09 Unix, Trace http://cseweb.ucsd.edu/
Linux driven ~kvishwanath/Swing/
16 Surge [30] Free! 1998-11 All App level http://cs-www.bu.edu/faculty/
gen crovella/surge_1.00a.tar.gz
17 OSNT [4] - 2019-01 NetFPGA Script http://osnt.org/
driven
18 Bit-Twist [152] GPLv2 2012-04 All Traffic http://bittwist.sourceforge.net/
replay
19 Globetraft [82] - 2016-09 All Trace https:
driven //github.com/lookat119/GlobeTraff
20 Ixnetwork [85] Comm- - - - https://www.ixiacom.com/products/
ercial ixnetwork
21 Nping [107] GPLv2 2018-03 All CMT https://nmap.org/nping/
22 TRex [37] Apache- 2019-01 Unix, Script https://trex-tgn.cisco.com/
v2 Linux driven
23 Ostinato [113] GPLv3 2019-01 All Script https://ostinato.org/
driven
24 libcrafter [118] MIT 2017-09 Unix, Script https:
Linux driven //github.com/pellegre/libcrafter
25 PackMime- MIT 2005-06 NS2 App level https://www.cs.odu.edu/~mweigle/
HTTP gen research/packmime/
[147]
26 Spirent Comm- - - - https://www.spirent.com/products/
SmartBits [134]° ercial testcenter

(Continued)

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

https://sourceforge.net/projects/iperf2/
https://hewlettpackard.github.io/netperf/
https://github.com/httperf/httperf
https://github.com/emmericp/MoonGen
http://www.secdev.org/projects/scapy/
https://github.com/torvalds/linux/blob/master/net/core/pktgen.c
http://nc110.sourceforge.net/
https://github.com/esnet/iperf
http://tcpreplay.appneta.com/
https://pktgen-dpdk.readthedocs.io/en/latest/
https://github.com/jsommers/harpoon
http://www.grid.unina.it/software/ITG/
https://github.com/weiglemc/tmix-ns2
https://www.nuttcp.net/
http://cseweb.ucsd.edu/~kvishwanath/Swing/
http://cs-www.bu.edu/faculty/crovella/surge_1.00a.tar.gz
http://osnt.org/
http://bittwist.sourceforge.net/
https://github.com/lookat119/GlobeTraff
https://www.ixiacom.com/products/ixnetwork
https://nmap.org/nping/
https://trex-tgn.cisco.com/
https://ostinato.org/
https://github.com/pellegre/libcrafter
https://www.cs.odu.edu/~mweigle/research/packmime/
https://www.spirent.com/products/testcenter

Network Traffic Generation: A Survey and Methodology

Table 1. Continued

28:5

D Name License Status Date Platform® Category Link (Source, Binaries, Paper)

27 Nemesis [104] GPLv2 2003-11 All Script http://nemesis.sourceforge.net/

driven

28 LANforge Comm- - All - http://www.candelatech.com/
FIRE [35]° ercial

29 Mtools [26] - - - - http://www.grid.unina.it/grid/mtools/

30 Netspec [79] - 1997-12 Unix, Trace http://www.ittc.ku.edu/netspec/

Linux driven
31 Skaion TGS Comm- - - Other http://www.skaion.com/
[130] ercial
32 Trafgen [75] GPLv2 2019-01 Unix, App level http://netsniff-ng.org/
Linux, gen
Mac

33 RAMP [94] - - - Trace http://www.csie.ncku.edu.tw/~klan/

driven data/materials/ramp.pdf

34 BRUTE [34] GPLv2 2016-11 Linux CMT? https://github.com/awgn/brute

35 Breaking- Comm- - - App level https://www.ixiacom.com/products/
Point ercial gen breakingpoint-ve
(83]

36 IP-Packet [29] GPLv2 2003-11 Linux, CMT? http://p-a-t-

FreeBSD h.sourceforge.net/html/index.php

37 Rude/Crude GPLv2 2002-06 All CMT? http://www.atm.tut.fi/rude
(93]

38 Bruno [3] - - - Trace https:

driven //ieeexplore.ieee.org/document/4667607

39 Divide & - - - Traffic https://doi.org/10.1109/TRIDNT.2005.18
Conquer [151] replay

40 Byte-Blower = Comm- - - - https://www.excentis.com/products/
[49] ercial byteblower/

41 Colosoft Free! 2016-06 Windows CMT? http://www.colasoft.com/download/
Packet Builder products/download_packet_builder.php
[77]

42 EARReplay - - - Traffic https:

(89] replay //doi.org/10.1109/WCNC.2012.6214199

43 GL traffic Comm- - - - https://www.gl.com/traffic-
generator [74] ercial generators.html

44 HexInject [1] BSD-2- 2017-01 Linux CMT? http://hexinject.sourceforge.net/

Clause
45 IPGen [97] - 2001-03 - CMT? http://sourceforge.net/projects/ipgen/
46 IxChariot [84] Comm- - - Trace https:

ercial driven /[www.ixiacom.com/products/ixchariot

47 PIM-SM - - - - https://literature.cdn.keysight.com/
Packet litweb/pdf/5988-

Generator [2] 6560EN.pdf?id=1649878

48 EPB [141] Freel 2019-05 All (C) Script http://m-a-z.github.io/epb/

driven

49 NETI@ home - - - - http://neti.gatech.edu/
[128]

50 TTCP, Test - - - - https://www.cisco.com/c/en/us/support/
TCP [38] docs/dial-access/asynchronous-

connections/10340-ttcp.html

51 LANTraffic Comm- 2015-11 Windows CMT? https://www.zti-

[40] ercial communications.com/lantrafficv2/

(Continued)

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

http://nemesis.sourceforge.net/
http://www.candelatech.com/
http://www.grid.unina.it/grid/mtools/
http://www.ittc.ku.edu/netspec/
http://www.skaion.com/
http://netsniff-ng.org/
http://www.csie.ncku.edu.tw/~klan/data/materials/ramp.pdf
https://github.com/awgn/brute
https://www.ixiacom.com/products/breakingpoint-ve
http://p-a-t-h.sourceforge.net/html/index.php
http://www.atm.tut.fi/rude
https://ieeexplore.ieee.org/document/4667607
https://doi.org/10.1109/TRIDNT.2005.18
https://www.excentis.com/products/byteblower/
http://www.colasoft.com/download/products/download_packet_builder.php
https://doi.org/10.1109/WCNC.2012.6214199
https://www.gl.com/traffic-generators.html
http://hexinject.sourceforge.net/
http://sourceforge.net/projects/ipgen/
https://www.ixiacom.com/products/ixchariot
https://literature.cdn.keysight.com/litweb/pdf/5988-6560EN.pdf?id=1649878
http://m-a-z.github.io/epb/
http://neti.gatech.edu/
https://www.cisco.com/c/en/us/support/docs/dial-access/asynchronous-connections/10340-ttcp.html
https://www.zti-communications.com/lantrafficv2/

28:6 O. A. Adeleke et al.
Table 1. Continued
ID Name License Status Date Platform® Category Link (Source, Binaries, Paper)
52 Libtins [52] BSD 2019-01 All Script https://github.com/mfontanini/libtins
driven
53 LitGen [123] - - - Trace https://dl.acm.org/doi/10.5555/1762888.
driven 1762896
54 MGEN [92] MIT- 2018-11 All Model https://www.nrl.navy.mil/itd/ncs/
ish based. products/mgen
55 UDP Generator MIT 1999-05 Linux, CMT? http://www.citi.umich.edu/projects/
[136] Unix gbone/generator.html
56 Network - - Unix, CMT? http://www.netexpect.org/
Expect [46] Linux,
Mac
57 Cat Karat [43] Comm- 2010-01 Windows CMT? https://sites.google.com/site/
ercial catkaratpacketbuilder/
58 NTG [153] - - - App level http://www.wseas.us/e-library/
gen conferences/2013/Paris/CCTC/CCTC-
35.pdf
59 Fragout [133] BSD-3- 2002-04 All CMT? http://www.monkey.org/~dugsong/
Clause fragroute/
60 GEIST [80] BSD-2- 2012-11 All Model http://kkant.net/geist/
Clause based
61 NTGM [117] Comm- 2018-10 Windows CMT? http://pbsftwr.tripod.com/id17.html
ercial
62 Graph-Based - - - - http://rvs.unibe.ch/research/pub_files/
TG [129]* SSKB10.pdf
63 Inter- - - - - http://www.donfraysoftware.com/
networking MITS/MITS htm
Test TG [44]*
64 Omnicor TG Comm- - - Model https://www.omnicor.com/products/
[110]* ercial based network-testing-tools
65 Jugi’s TG [98]* GPLv2 2010-11 Linux CMT? http:
//www.netlab.tkk.fi/~jmanner/jtg.html
66 KUTE [154] GPLv2 2007-09 Linux CMT? http:
//caia.swin.edu.au/genius/tools/kute/
67 LAN- - - - - http://www.triticom.com/triticom/
decoder32T 1d32/trafgen.htm
[139]
68 packet sender GPLv2 2018-12 All CMT? https://packetsender.com/
[103]
69 PackETH [116] GPLv3 2017-12 All CMT? http://packeth.sourceforge.net/
70 Mausezhan GPLv2 2011-12 Linux (C) CMT? https://github.com/uweber/mausezahn
[146]
71 MxTraf [88] GPLv2 - - - http://mxtraf.sourceforge.net/
72 Solarwinds Comm- - Windows CMT? https://www.solarwinds.com/topics/
WAN killer ercial traffic-generator-wan-killer
[131]
73 NSWEB [145] - - NS2 - https://www.net.t-labs.tu-
berlin.de/~joerg/
74 NTGen [28] - 2002-11 Linux - http://softlab-pro-web.technion.ac.il/
(C/C++) projects/NTGen/html/ntgen. htm
75 STG-10G [45] Comm- - - Model https://www.ecdata.com/products/
ercial based stateful-traffic-generator/

(Continued)

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

https://github.com/mfontanini/libtins
https://dl.acm.org/doi/10.5555/1762888.1762896
https://www.nrl.navy.mil/itd/ncs/products/mgen
http://www.citi.umich.edu/projects/qbone/generator.html
http://www.netexpect.org/
https://sites.google.com/site/catkaratpacketbuilder/
http://www.wseas.us/e-library/conferences/2013/Paris/CCTC/CCTC-35.pdf
http://www.monkey.org/~dugsong/fragroute/
http://kkant.net/geist/
http://pbsftwr.tripod.com/id17.html
http://rvs.unibe.ch/research/pub_files/SSKB10.pdf
http://www.donfraysoftware.com/MITS/MITS.htm
https://www.omnicor.com/products/network-testing-tools
http://www.netlab.tkk.fi/~jmanner/jtg.html
http://caia.swin.edu.au/genius/tools/kute/
http://www.triticom.com/triticom/ld32/trafgen.htm
https://packetsender.com/
http://packeth.sourceforge.net/
https://github.com/uweber/mausezahn
http://mxtraf.sourceforge.net/
https://www.solarwinds.com/topics/traffic-generator-wan-killer
https://www.net.t-labs.tu-berlin.de/~joerg/
http://softlab-pro-web.technion.ac.il/projects/NTGen/html/ntgen.htm
https://www.ecdata.com/products/stateful-traffic-generator/

Network Traffic Generation: A Survey and Methodology 28:7

Table 1. Continued

D Name License Status Date Platform® Category Link (Source, Binaries, Paper)
76 PacGen [114] GPL-v2 2006-09 Linux (C) CMT? http:
//sourceforge.net/projects/pacgen/
77 PlayCap [112] GPLv3 2010-03 All Traffic https://github.com/signal11/PlayCap
replay
78 Poisson TG - 2003-06 ©) Model http://www.spin.rice.edu/Software/
[122]* based poisson_gen/
79 ProvaGEN 3.0 - - - - http://www.provanet.com/packet_
[42] generator_tts_page.htm
80 Qosnetics TG - - - - http://www.qosnetics.com/
[126]*
81 Real-Time - - - - http://www.cs.ucr.edu/~msamidi/
Voice TG projects.htm
[125]%
82 VOIP TG [32]* - 2005-11 (perl) App level http://voiptg.sourceforge.net/
gen
83 Self Similar TG MIT 2001-04 ©) Model http://research.glenkramer.com/code/
[87]% based trf_gen3.shtml
84 Sources-OnOff GPLv3, 2013-03 Linux (C) Model http://www.recherche.enac.fr/~avaret/
[140] CeCILL based sourcesonoff
85 SPAK [81] - - - - http://static.lwn.net/lwn/1998/0312/a/
Packet spak.html
Generator
86 TCPivo [50] - 2002-09 Linux (C) Traffic https://www.thefengs.com/wuchang/
replay work/tcpivo/
87 TfGen [137] - 1998-02 Windows CMT? http://www.pgcgi.com/hptools/
88 IP-traffic [115] Comm- 2019 Windows CMT? https://www.pds-test.co.uk/products/
ercial ip_test_measure.html
89 Traffic - - - - http://www.postel.org/tg/
Generator Tool
[119]
90 WRAP [106] BSD 2019-01 All Script https://github.com/Juniper/warp17
clause driven
91 Yersinia [31] GPLv2 2017-09 All CMT? https://github.com/tomac/yersinia
92 YouTube - - - - http://citeseerx.ist.psu.edu/viewdoc/
Workload download?doi=10.1.1.471.4292&rep=
generator [36] repl&type=pdf

Some traffic generators classified as free require attribution.

2CMT stands for constant or maximum throughput traffic generators (see Section 3).
30ther, when not listed in the pre-defined traffic generator categories in Section 3.
4TG is used as an abbreviation for traffic generator.

SPlatform refers to supported operating systems.

SHardware traffic generators, all others are software traffic generators.

constant/max throughput traffic generators, even when controlling for the smaller set of recent
publications. Although they do not make the top 10, there are many of other realistic traffic gen-
erators in the next 10 on the list in Table 1.

In recent years usage of script driven traffic generators like moongen [47], and DPDK pktgen
[149] that allow extensive variations in specific header values have gained more traction, and we
expect that trend to continue. In addition, some of these script driven traffic generators like trex
[37] do not feature among the top 10. However, we believe that generators of this type will find
increasing utility in research in the near term.

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

http://sourceforge.net/projects/pacgen/
https://github.com/signal11/PlayCap
http://www.spin.rice.edu/Software/poisson_gen/
http://www.provanet.com/packet_generator_tts_page.htm
http://www.qosnetics.com/
http://www.cs.ucr.edu/~msamidi/projects.htm
http://voiptg.sourceforge.net/
http://research.glenkramer.com/code/trf_gen3.shtml
http://www.recherche.enac.fr/~avaret/sourcesonoff
http://static.lwn.net/lwn/1998/0312/a/spak.html
https://www.thefengs.com/wuchang/work/tcpivo/
http://www.pgcgi.com/hptools/
https://www.pds-test.co.uk/products/ip_test_measure.html
http://www.postel.org/tg/
https://github.com/Juniper/warp17
https://github.com/tomac/yersinia
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.471.4292&rep=rep1&type=pdf

28:8 O. A. Adeleke et al.

200

60 BN Mentions
mm Citations
B Usages

50

40

30

20

10

netperf
moongen
linux pktgen
tcpreplay
dpdk pktgen

Fig. 1. Top traffic generators from ACM and USENIX networking-related conference publications [121].

Most constant/maximum throughput traffic generators create packets with almost no variation
in header and payload contents—they usually only allow for selection of a single value for specific
header fields before the beginning of their generation process. As such, they are useful for a narrow
class of applications and may not reflect a true mix of network traffic in typical topologies. For
example, one such generator is iperf2. Per each run, iperf2 can provide a TCP or UDP flow that
is driven by a constant throughput goal. Despite these limitations, these types of generators are
quite popular. We examined all papers where iperf2 was used to find out if such papers used
any other traffic generation mechanisms in combination, but found almost none. The count of the
number of papers per year in which iperf2 was used exclusively is plotted in Figure 3, mirroring
the baseline numbers in Figure 2.

We need to note that bespoke generation techniques are not included in our analysis. In some
types of experiments that require specific traffic patterns, researchers may write appropriate wrap-
per scripts and native packet creators for the generation task with the desired traffic patterns. Nev-
ertheless, there were not a significant number of papers referring to traffic generation without a
reference to a specific generator.

3 A TAXONOMY OF TRAFFIC GENERATORS

Traffic generators are software tools or hardware devices that create network packets based on
scripted, recorded, or configured patterns. That is, packets from traffic generators are not generated
through actual application conversation workflows, even though the traffic generation system may
be designed to generate packets that mimic what may be seen in a real production environment.
Different network traffic generators are designed with different goals. While some are designed to
stress-test network devices and software, some others are designed to be able to craft packets for
tests of performance and behavior correctness. In this survey we focus on the behavior analysis of
traffic generators, as performance is strongly influenced by individual deployment environments.

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

Network Traffic Generation: A Survey and Methodology 28:9

30
iperf2 netperf
10
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
30
httperf moongen
20
10
0! - L - , .
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
30
scapy linux pktgen
20
10
=
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
30
netcat tcpreplay
20
10
— — . . 4
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
30
iperf3 dpdk pktgen
20
10
— T T
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Fig. 2. Usage by year of top 10 generators as cited in ACM and USENIX networking-related conference
publications.

iperf only

10

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Fig. 3. Per year exclusive usage citations of iperf2.

We expand on the classifications provided by Molnar et al. [101] from the perspective of
their techniques for pushing packets into the network. Traffic generators can be categorized into
constant/maximum throughput generators, application-level synthetic workload generators, trace
file replay systems, model-based generators, and script driven traffic generators. We describe each
class below.

3.1 Constant or Maximum Throughput Generators

A packet is created with specific application-layer header fields and then repeatedly sent out on a
network interface at a constant rate or at the maximum possible rate (in bits per second (bps) or

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

28:10 O. A. Adeleke et al.

Table 2. Classification of Traffic Generators per Section 3

Traffic Generator Category All

1 Constant or maximum throughput generators 26
2 Application level generators 7
3 Trace file replay tools 7
4 Model-based traffic generators 11
5 Trace driven model-based traffic generators 5
6 Script driven traffic generators 11
7 Others 25
Total 92

packets per second). Popular examples of traffic generators in this category are iperf2 [138] and
netperf [78]. These are often the easiest to use, and are suitable for quick network throughput
stress testing. A characteristic of generators in this category is that they offer little or no variation
in header and payload content of the packets that are blasted out the interfaces. In most traffic gen-
erators in this class—while some are capable of preserving the semantics of connection-oriented
network layer (TCP, etc.)—a user can specify only a single set of flow parameters per running
instance (such as the source and destination IP address and port numbers).

3.2 Application Level Synthetic Workload Generators

These generate network packet traffic for a specific type of application or higher-layer protocol
such as the httperf [102]. In some cases, researchers may launch actual application programs and
run a specific set of workloads using their data exchanges to generate the traffic. This approach of
workload generation is often capable of realistic variations on packets for the specific application
or protocol. However, the resulting workload still consists of a limited set of application events.
Exclusive usage of these approaches may result in network behavior deprived of realistic simulta-
neous background traffic or the application-user interaction in a typical production environment
[142].

3.3 Trace File Replay Systems

Replay systems inject packets from a pre-existing trace file into a network interface at the indi-
cated time intervals in the capture file. In some cases, users are able to specify the speed at which
they would like to replay the packets. Many researchers obtain trace files with anonymous data
and empty payload contents from public data sets [53, 95, 124], and replay them on the nodes of
their individual experiment topologies using tools like TCPreplay [5]. These replay systems can
produce traffic workloads that mirror the original traffic, especially if the workload can be run
on an experiment topology that is similar to the original network. However, most replay systems
are stateless and are unable to send the packets in a manner that will be responsive to network
congestion or topology events in the experiment. For example, such a replay will continue to send
out TCP packets even when the links between endpoints are down whereas a realistic TCP flow
control would have limited further packet transmissions. In addition, continuous replay of the
same trace file on a network will keep producing the same events periodically resulting in traffic
patterns that are unrealistic for many use cases.

3.4 Model-Based Traffic Generators

Given that network traffic is quite random, bursty, and self similar [73, 96, 150], a popular
method of generating realistic traffic is the creation and transmission of packets following random

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

Network Traffic Generation: A Survey and Methodology 28:11

distributions of their time intervals, packet sizes, and so on. One example of these is the Multi-
Generator (MGEN) [92] traffic generator. These generators allow users to specify a random distri-
bution model with parameters that may match the intended scenario of network traffic workload.
With carefully selected random distributions, they can generate traffic that is statistically similar
to traffic workloads in specific production environments.

3.5 Trace Driven Model-Based Traffic Generators

Some traffic generators go a step further than the purely model-based approach by allowing ex-
perimenters to supply a trace file input or log files of actual traffic from production networks. The
input trace file or log file is analyzed to create a model by fitting the various traffic parameters to
random distributions which are then used to generate packets. Good examples are harpoon [132]
and swing [144]. They generate packets that are statistically similar to actual packets seen in the
corresponding input production network trace or log file.

3.6 Script Driven Traffic Generators

In recent years many new scripts driven traffic generators have been developed. These genera-
tors allow users to dynamically modify the full range of packet header and data content through
complex coded logic. Popular examples of generators in this category are DPDK pktgen [149] and
moongen [47]. These allow users to create any type of packet, with almost any packet header value,
and while also dynamically modifying the packets at run time.

4 TRAFFIC GENERATOR SELECTION: COMMON REQUIREMENTS AND FEATURES

Traffic generators have diverse sets of features and they typically report a small set of built-in
metrics. There is no single traffic generator that is better in all experiment use cases than every
other one in terms of serving a research objective through these features and reported metrics.
For instance, while a particular traffic generator may be good at injecting packets into a network
at very high speeds, it may not provide dynamic packet length variations. In this respect, our
analysis of capabilities of generators resulted in a structured digests of features as presented below
in tabular form.

In Table 3, we show whether there is support for a particular feature among the top 10 traffic
generators in our survey. We examined the experiments, evaluations and methodology sections of
the surveyed papers for the research goals, the types of traffic workloads and their corresponding
required features. We then examined the documentation, source code, man pages, help information,
and the associated research papers for each of the generators in the top 10 list to verify the presence
of a particular capability in the Table 3.

Table 4 further gives a list of the header fields in the Ethernet, IPv4, TCP, and UDP protocol
stacks, and provides information on how each of the traffic generators in the top 10 list supports
the configuration of that header field. In some cases, header fields can be set only to a constant
value, while in other cases header fields can be set to vary within a range or be fully randomized
during the packet generation process.

Table 5 presents a list of common metrics among the auto-generated reports of traffic generators.
No single traffic generator reports a set of metrics that would be regarded as comprehensive, and
there are some that do not give a report at all. It is important to note that even when a generator is
able to report metrics, the limitations of execution environments may affect timing information or
strip low-level header data before reaching the generator, introducing uncontrolled error. There-
fore, it is always advised to validate metrics through packet traces of the generated traffic that are
captured on the wire.

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

28:12 0. A. Adeleke et al.
Table 3. Traffic Generator Selection: Common Features and Experiment Requirements
Generator
Feature! iperf2 net- http- moon- scapy Linux netcat iperf3 TCP- DPDK
perf erf gen? pkt- replay pkt-gen®
gen?
1 set # of packets v v v v v
2 set total bytes v v v
3 set fixed throughput V3 v v v v v v
4 set randomized v v
throughput
5 set packet rate v v v v v
6 set time duration v v v v v v v
7 send data files v v v
8 replay traffic traces v v v
9 set fixed packet size v v v
10 set randomized packet v v v v
sizes
11 set fixed inter-packet v v
time
12 set randomized v v
inter-packet times
13 support TCP v v v v v
connections
14 support SCTP v v v
connections
15 set MSS v v v
16 set reporting intervals v v v v v v v
17 set interface v v v v v
18 specify IP addr. of v v v
interface
19 set CPU affinity v v v v v
20 generate IP fragments v v v v
21 bi-directional v v v v
generation
22 multiple parallel v v v v v v v v
connections/flows
23 arbitrary http requests v v

IFeature descriptions are provided in appendix A.1.
2Requires exclusive control of the network interface.
SUDP only.

4.1

Traffic Generator Selection Methodology

The Table 3 presents the top 10 list with varying levels of support for the list of features. There
are some generators that support all of the features in addition to giving a comprehensive set of
metric reports, but they usually require commercial licenses that are quite expensive [85, 130].
Researchers are tasked with a preliminary assessment of generator features and an evaluation of
each generator for the research objectives. We provide a method to select a traffic generator using
this paper’s compilations on generator categories and their respective features. As features of each

generator advances and as new generators are created, we expect that there will be the community
updates on the tabular digests.

(1) Definition of Workload Requirements: Before selecting a generator, an experimenter
first needs to identify specific requirements of the traffic workload that are of vital impor-
tance for the experimental goals of the research. Based on the traffic generation objectives,

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

Network Traffic Generation: A Survey and Methodology 28:13
Table 4. Supported Configuration of Header Fields for the Top 10 Traffic Generators
Generator
Header Field iperf2 net- http- moon- scapy Linux netcat iperf3 TCP- DPDK
perf erf gen pktgen replay pktgen
1 L2 source MAC * * * * *
2 L2 destination MAC * * * * *
3 L2 VLANID * * v * *
4 L2 ethertype * * * *
5 L3 source IP v v * * * v v * *
6 L3 destination IP v v v * * * v v * *
7 L3 header length * * * *
8 L3 DSCP/TOS v * * v v v * *
9 L3ECN * * * *
10 L3 total length * * * *
11 L3 identification * * * *
12 L3 don’t fragment * * * *
13 L3 more fragments * * * *
14 L3 fragment offset * * * *
15 L3TTL v * * * *
16 L3 protocol * * * *
17 L3 header * * * *
checksum
18 L4 source port v * * *! v v * *
19 L4 destination port v v v * * x! v v * *
20 TCP sequence num * * * *
21 TCP ack number * * * *
22 TCP data offset * * * *
23 TCP reserved bits * * * *
24 TCP flags * * * *
25 TCP window size v v * * v * *
26 TCP checksum * * * *
27 TCP urgent pointer * * * *
28 TCP options vt * * V2 * *
29 UDP length * * * *
30 UDP checksum * * * *

V': set to single value (no variation of the header field is supported during generation)
*: single, varying, or randomized values can be set for the header field
1UDP only.

2TCP_NODELAY option only.

the researcher must then identify the specific features of the desired traffic workload picked
from the Tables 3 and 4. This first step is in a sense the most important one in the method-
ology. The chosen requirements will serve as the driving input for each of the subsequent

steps below.

(2) Availability: A researcher may start with the list of 92 traffic generators given in the Table 1
to determine which generators are available. We note that the generator has to be within the
skill-set, resources, and capabilities of the researcher from the perspectives of the research
platform requirements and ease-of-use.
(3) Validation of the Workload: The initial list is then filtered based on the category of traffic
workloads. A taxonomy for the workload characteristics has been provided in Section 3. The
specific requirements of the traffic workload can then be validated by the characteristics of

the generators of choice.

(4) Features: One of the key decision points for the researcher is what features are supported
by a generator of choice (Tables 3 and 4). The desired workload properties for the specific

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

28:14 O. A. Adeleke et al.

Table 5. Reported Metrics for the Top 10 Generators

Generator
Reported Metric! iperf2 net- http- moon- scapy Linux netcat iperf3 TCP- DPDK
perf erf gen pktgen replay pktgen
1 throughput v v v v v v
2 latency v v v v
3 packet rate v v v v
4 total no. of packets v v v v v v
5 total no. of bytes v v v v v v
6 duration v v v v v v v
7 jitter v v v v
8 no.of v v v
retransmissions
9 no. of drops v v v v v v
10 MSS v v v
11 congestion win. v v
size(s)
12 CPU demand v
13 number of flows or v v v v v v v v
connections
14 request/response v 2

transaction rates

!Metric descriptions are provided in appendix A.2.
2http only.

research goals could result in a trade-off when generators that lack some of the key features
are preferred per availability, ease-of-use, performance and other concerns.

The tabulated digests provide a guideline in picking features to address traffic generation ob-
jectives of the researcher. We expect that these digests will be kept up to date with the new de-
velopments on existing generators and as new generators are added while preserving most of the
structure.

4.2 An Example: Load-Balancing Research

To demonstrate a typical walk-through of the steps in the previous section, we present a research
project on a new fictitious layer 4 load-balancing network function that leverages TCP header
information.

Step 1 - Requirements: The traffic workload required for this research has diverse transaction
characteristics with relatively fixed total throughput. Therefore, the features are:

(1) multiple parallel TCP connections or flows;
(2) ability to generate packets with varying packet sizes;
(3) ability to vary header fields: L3 source IP addresses and L4 source port numbers.

Step 2 - Availability: Based on the constraints of our runtime environment, licensing require-
ments, and current availability of each generator, we filter the options in Table 1 down to 31 choices.
Among this number we have all those in the top 10 list—iperf2, netperf, httperf, moongen,
scapy, linux pktgen, netcat, TCPreplay, iperf3, DPDK pktgen, and 21 others.

Step 3 - Characteristics of Desired Traffic: Many classes of traffic generators have support
for diverse transactions and relatively fixed total throughput. For example, some constant/maxi-
mum throughput traffic generators (Section 3.1) allow for multiple simultaneous TCP and UDP
connections. Many model-based generators (Section 3.4 and 3.5) and script driven traffic genera-
tors (Section 3.6) also support the type of traffic desired.

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

Network Traffic Generation: A Survey and Methodology 28:15

Step 4 - Features: Tables 3 and 4 are utilized to narrow down the generators of interest for the
research task. Based on the feature list in step-1, shortlisted generators must have check marks on
rows 3, 10, and 22 of Table 3 and a star in rows 5 and 18 of Table 4. Thus, the resulting list includes
scapy, moongen, and dpdk pktgen. We do not include linux pktgen in the shortlist because
randomization of L4 source port numbers is not possible as shown in footnote 1 of Table 4, even
though all other requirements are met by this generator.

Further discrimination among the selected tools will require experiment-specific considerations.

5 EXISTING SURVEYS

There have been a few surveys on network traffic generators in the past. Kolahi et al. [86] eval-
uated the TCP throughput performance of four traffic generators, and provided a comparison of
their features. The generators compared include Iperf, Netperf, D-ITG, and IP Traffic. The experi-
ments were exclusively carried out between 2 computers running the Windows operating system.
Authors observed that the bandwidth that the tools measure can vary as much as 16.5 Mbps for
a TCP connection over a 100 Mbps link. For the same network set up, Iperf measured the highest
bandwidth (93.1 Mbps) while IP traffic the lowest (76.7 Mbps).

Molnar et al. [101] unveiled the fact that there is no consensus in the research community how
to validate network traffic generators. They recommended 9 metrics that could be used to validate
traffic generators and classified 19 traffic generators into 5 classes, presenting specific validation
techniques for each class of generators.

Mishra et al. [100] compared six traffic generators in terms of TCP and UDP throughput per-
formance under various scenarios. The generators compared include D-ITG, PackETH, Ostinato,
Iperf, Netperf, and IP Traffic. Their results showed different generators excelled in terms of various
metrics under different circumstances. They concluded that a single traffic generator is not appli-
cable for all types of networks. Traffic Generators are designed for specific applications depending
upon the need and characteristics of application and network.

More recently, Emmerich et al. [48] undertook a performance comparison for high-performance
software traffic generators in terms of their approach to rate control, performance, precision, and
accuracy of packet injection times. The traffic generators compared include Moongen, DPDK Pkt-
gen, Linux Pktgen, and pfq-gen. They observed that for most of these software based high perfor-
mance generators can offer good thoughput performance and high accuracy of packet injection
times as long as overloading does not occur. The work also showed that the performance and pre-
cision of most high frequency software generators is greatly dependent on clock frequency of the
CPU hardware used.

Most of the surveys cited above directly compare the performance of a selected short list of
traffic generators. We realize that each generator may have unique features that make it more
suitable for specific types of traffic generation than the others. Therefore, we do not attempt to
directly compare the performance of the traffic generators—something that should be validated
independently in each new experiment configuration—but we present their features along with a
methodology to qualitatively make a shortlist of traffic generators that meet the requirements for
specific experimental objectives.

6 SUMMARY

We present a survey that identifies 92 traffic generators from a large corpus of conference pro-
ceeding publications. We perform a classification of the generators based on the method of traffic
generation. From the results of our survey, we determine the top 10 most popular traffic genera-
tors through analysis of over 7,000 papers published in ACM, SIGCOMM, and USENIX conferences
over the last 13 years. We observe that the set of supported features by each traffic generator vary

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

28:16 O. A. Adeleke et al.

considerably. By determining the main functionality of each generator at hand, we categorize fea-
tures for individual generators into a structured form to eventually serve research objectives. Our
compilations provide the traffic generator outcomes and functionality, which are then used in the
traffic generation selection mechanism in Section 4.1. The compilations in the tables are expected
to be updated as individual generator functionalities evolve and new generators are released. How-
ever, the methodology will stay the same for the alignment of experimental objectives to the choice
of the generator capabilities.

APPENDIX
A DEFINITIONS OF TABLE ROW HEADERS
A.1 Table3

The descriptions for each feature listed in Table 3 are given below.

1 Set # of packets: Configure the total number of packets to send.
2 Set total bytes: Configure the total number of bytes to send.
3 Set fixed throughput: Set a fixed value for the throughput in bps
4 Set randomized throughput: Configure set of values, or a random distribution for the
throughput at which to send packets.
5 Set packet rate: Configure a fixed value in packet rates per second (pps) at which packets
should be sent.
6 Set time duration: Set a time limit for the duration of the traffic generation process.
7 Send data files: Configure the generator to use an arbitrary data file as data source for the
payload of the packets to be sent.
8 Replay traffic traces: Generator supports the replay network traffic trace files.
9 Set fixed packet size: Configure a packet size in bytes, for all packets to be sent by the
generator.
10 Set randomized packet sizes: Configure packet sizes to be picked from a set of values.
These values can be picked from a particular random distribution.
11 Set fixed inter-packet time: Set a fixed value for inter-packet time intervals in seconds for
the packets.
12 Set randomized inter-packet times: Configure inter-packet time values to be picket from
a set of values or from a random distribution.
13 Support TCP connections: Generator supports actual TCP connections, and not just 1-
sided flows.
14 Support SCTP connections: Generator supports actual SCTP connections, and not just
1-sided flows.
15 Set MSS: Configure a fixed value for maximum segment size (MSS).
16 Set reporting intervals: Configure time intervals at which to show a summary of the pack-
ets sent so far, while the generation process is ongoing.
17 Set interface: Select the network interface on which to send out packets.
18 Specify IP address of interface: Select the interface on which to send out packets, by
specifying the IP address associated with the interface.
19 Set CPU affinity: Select a CPU core to use for the packet generation process on multi-core
systems.
20 Generate IP fragments: Native support for the generation of fragmented IP packets.
21 Bi-directional generation: Native support for sending packets in both directions, from
the source and the target, each one towards the other.

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

Network Traffic Generation: A Survey and Methodology 28:17

22 Multiple parallel connections/ flows: Native support for sending packets associated with
multiple flows or connections simultaneously.
23 Arbitrary http requests: Configure to send any HTTP request to a target host.

A.2 Table5

The descriptions for each feature listed in Table 5 are given below.

1 Throughput: The amount of data delivered by the traffic generator from the source to target
per unit time, usually measured in bps.
2 Latency: The interval between the time a packet is sent from a source, and the time it is
received at the destination.
3 Packet rate: The number of packets delivered by the traffic generator from the source to
target, usually measured in pps.
4 Total no. of packets: The total number of packets sent from the source to the target during
the entire traffic generation process.
5 Total no. of bytes: The total amount of data in bytes sent from the source to the sink during
the traffic generation process.
6 Duration: The total time elapsed during the traffic generation process usually measured in
seconds.
7 Jitter: The variation in latency of packets usually measured in seconds.
8 No. of retransmissions: The total number of packets that had to be re-transmitted during
the packet generation process.
9 No. of drops: The total number of packets that were sent from the source but not success-
fully received at the receiver.
10 MSS: The MSS of TCP packets sent by the generator.
11 Congestion win. size(s): The congestion window size of the sending host of the traffic
generator.
12 CPU demand: The amount of CPU utilized by the traffic generator.
13 Number of flows or connections: The total number of unique connections or the total
number of unique flows created by the traffic generation process.
14 Request/response transaction rates: For the traffic generators that conform to the
request-response model, this is the number of request and response pairs completed per
unit time.

REFERENCES

[1] Emanuele Acri. 2017. HexInject: The Power of Raw Hex Network Access. Retrieved 13 April, 2020 from http:
//hexinject.sourceforge.net/.

[2] Agilent Technologies. 2002. PIM-SM Multicast Performance Testing. Retrieved 12 April, 2020 from https://literature.
cdn.keysight.com/litweb/pdf/5988-6560EN.pdf?id=1649878.

[3] Gianni Antichi, Andrea Di Pietro, Domenico Ficara, Stefano Giordano, Gregorio Procissi, and Fabio Vitucci. 2008.
Bruno: A high performance traffic generator for network processor. In Proceedings of the Performance Evaluation of
Computer and Telecommunication Systems, 2008. SPECTS 2008. International Symposium on. IEEE, 526-533.

[4] Gianni Antichi, Muhammad Shahbaz, Yilong Geng, Noa Zilberman, Adam Covington, Marc Bruyere, Nick Mckeown,
Nick Feamster, Bob Felderman, Michaela Blott, Andrew Moore, and Philippe Owezarski. 2014. OSNT: Open Source
Network Tester. IEEE Network 28, 5 (Sept. 2014), 6-12. DOI : https://doi.org/10.1109/MNET.2014.6915433

[5] AppNeta. 2011. Tepreplay. AppNeta Inc. Retrieved from https://tcpreplay.appneta.com/.

[6] USENIX (Advanced Computing Systems Association). 2006-2007. In Proceedings of the Workshop on Steps to Reducing
Unwanted Traffic on the Internet. (all published papers in the proceedings).

[7] USENIX (Advanced Computing Systems Association). 2006-2012. In Proceedings of the USENIX Summit on Hot Topics
in Security. (all published papers in the proceedings).

[8] USENIX (Advanced Computing Systems Association). 2006—-2013. In Proceedings of the Large Installation System
Administration Conference. (all published papers in the proceedings).

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

http://hexinject.sourceforge.net/
https://literature.cdn.keysight.com/litweb/pdf/5988-6560EN.pdf?id=1649878
https://doi.org/10.1109/MNET.2014.6915433
https://tcpreplay.appneta.com/

28:18 O. A. Adeleke et al.

[9] USENIX (Advanced Computing Systems Association). 2006-2014. In Proceedings of the Electronic Voting Technology

Workshop/Workshop on Trustworthy Elections. (all published papers in the proceedings).

[10] USENIX (Advanced Computing Systems Association). 2006-2018. In Proceedings of the USENIX Annual Technical
Conference. (all published papers in the proceedings).

[11] USENIX (Advanced Computing Systems Association). 2006—-2018. In Proceedings of the USENIX Security Symposium.
(all published papers in the proceedings).

[12] USENIX (Advanced Computing Systems Association). 2006-2018. In Proceedings of the USENIX Symposium on Net-
worked Systems Design and Implementation. (all published papers in the proceedings).

[13] USENIX (Advanced Computing Systems Association). 2006-2018. In Proceedings of the USENIX Symposium on Oper-
ating Systems Design and Implementation. (all published papers in the proceedings).

[14] USENIX (Advanced Computing Systems Association). 2007. In Proceedings of the International Workshop on Network-
ing Meets Databases. (all published papers in the proceedings).

[15] USENIX (Advanced Computing Systems Association). 2008. In Proceedings of the USENIX Workshop on the Analysis
of System Logs. (all published papers in the proceedings).

[16] USENIX (Advanced Computing Systems Association). 2008. In Proceedings of the Workshop on Tackling Computer

Systems Problems with Machine Learning Techniques. (all published papers in the proceedings).

USENIX (Advanced Computing Systems Association). 2008-2018. In Proceedings of the USENIX Workshop on Cyber

Security Experimentation and Test. (all published papers in the proceedings).

USENIX (Advanced Computing Systems Association). 2009-2010. In Proceedings of the International Workshop on

Peer-to-Peer Systems. (all published papers in the proceedings).

USENIX (Advanced Computing Systems Association). 2009-2018. In Proceedings of the USENIX Workshop on Hot

Topics in Cloud Computing. (all published papers in the proceedings).

USENIX (Advanced Computing Systems Association). 2010. In Proceedings of the Asia-Pacific Workshop on Systems.

(all published papers in the proceedings).

USENIX (Advanced Computing Systems Association). 2010-2012. In Proceedings of the USENIX Conference on Web

Application Development. (all published papers in the proceedings).

USENIX (Advanced Computing Systems Association). 2011-2018. In Proceedings of the USENIX Workshop on Free and

Open Communications on the Internet. (all published papers in the proceedings).

USENIX (Advanced Computing Systems Association). 2014. In Proceedings of the Open Networking Summit. (all pub-

lished papers in the proceedings).

USENIX (Advanced Computing Systems Association). 2016. In Proceedings of the USENIX Workshop on Cool Topics

in Sustainable Data Centers. (all published papers in the proceedings).

USENIX (Advanced Computing Systems Association). 2018. In Proceedings of the USENIX Workshop on Hot Topics in

Edge Computing. (all published papers in the proceedings).

Stefano Avallone, Marcello Esposito, Antonio Pescape, Simon Pietro Romano, and Giorgio Ventre. 2002. Mtools:

A one-way delay and round-trip-time meter. In Proceedings of the Recent Advances in Computers, Computing and

Communications. WSEAS PRESS.

Stefano Avallone, Salvatore Guadagno, Donato Emma, Antonio Pescape, and Giorgio Ventre. 2004. D-ITG Distributed

Internet Traffic Generator. In Proceedings of the Ist International Conference on Quantitative Evaluation of Systems,

2004. QEST 2004. IEEE, 316-317.

Yariv Bachar and Ophir Ovadia. 2002. NTGen Project. Retrieved 13 April, 2020 from http://softlab-pro-web.technion.

ac.il/projects/NTGen/html/ntgen htm.

Bastian Ballman and Stefan Krecher. 2005. IP-Packet Generator. Retrieved 13 April, 2020 from http://p-a-t-h.

sourceforge.net/html/index.php.

[30] Paul Barford and Mark Crovella. 1998. Generating representative web workloads for network and server performance
evaluation. In Proceedings of the 1998 ACM SIGMETRICS Joint International Conference on Measurement and Modeling
of Computer Systems. ACM, 151-160.

[31] David Barroso. 2020. Yersinia Traffic Generator. Retrieved 13 April, 2020 from https://github.com/tomac/yersinia.

[32] Bruno Benchimol. 2005. VoIP Traffic Generator. Retrieved 13 April, 2020 from http://voiptg.sourceforge.net/.

(33]

(34]

(17

—

(18

=

[19

—

[20

=

(21

—

[22

—

[23

=

[24

[l

[25

=

26

[l

[27

—

[28

=

—
oo
N=}

[

Philippe Biondi. 2011. Scapy. Scapy Community. Retrieved 13 April, 2020 from https://scapy.net/.

Nicola Bonelli, Stefano Giordano, Gregorio Procissi, and Raffaello Secchi. 2005. Brute: A high performance and ex-
tensible traffic generator. In Proceedings of the SPECTS. International Society for Modeling and Simulation, 839-845.
[35] Candela Technologies. 2020. Lanforge: Stateful IP Traffic Generators and Network Emulators. Retrieved 13 April,

2020 from http://www.candelatech.com/.

[36] Pedro Casas, Andreas Sackl, Sebastian Egger-Lampl, and Raimund Schatz. 2012. YouTube & Facebook Quality of
Experience in Mobile Broadband Networks. In Proceedings of the 2012 IEEE Globecom Workshops. IEEE. DOI : https:
//doi.org/10.1109/GLOCOMW.2012.6477764

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

http://softlab-pro-web.technion.ac.il/projects/NTGen/html/ntgen.htm
http://p-a-t-h.sourceforge.net/html/index.php
https://github.com/tomac/yersinia
http://voiptg.sourceforge.net/
https://scapy.net/
http://www.candelatech.com/
https://doi.org/10.1109/GLOCOMW.2012.6477764

Network Traffic Generation: A Survey and Methodology 28:19

[37] Cisco. 2019. TRex: Realistic Traffic Generator. Cisco. Retrieved 09 October, 2020 from https://trex-tgn.cisco.com/.

[38] Cisco Inc. 2005. Using Test TCP (TTCP) to Test Throughput. Retrieved 13 April, 2020 from https://www.cisco.com/
c/en/us/support/docs/dial-access/asynchronous-connections/10340-ttcp.html.

[39] Cisco Inc. 2020. Cisco Annual Internet Report, 2018-2023. Global Mobile Data Traffic Forecast 2020, (2020), 5.
Retrieved on 8 November, 2020 from https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/whitepaper-c11-741490.html.

[40] ZTI Communications. 2020. LanTraffic V2. Retrieved 13 April, 2020 from https://www.zti-communications.com/
lantrafficv2/.

[41] ITC (International Teletraffic Congress). 2011. In Proceedings of the International Workshop on Modeling, Analysis,
and Control of Complex Networks. (all published papers in the proceedings).

[42] Universita’ degli Studi di Napoli. 2020. Other Internet Traffic Generators. Retrieved 13 April, 2020 from http://www.
grid.unina.it/software/ITG/link.php.

[43] Valery Diomin and Yakov Tetruashvili. 2010. Cat Karat Packet Builder. Retrieved 13 April, 2020 from https://sites.
google.com/site/catkaratpacketbuilder/.

[44] Donfrays Software. 2018. Inter-Networking Test Traffic Generator. Retrieved 13 April, 2020 from http://www.
donfraysoftware.com/MITS/MITS.htm.

[45] East Coast Data Comm Inc. 2019. Stateful Traffic Generator. Retrieved 13 April, 2020 from https://www.ecdata.com/
Products/Stateful-Traffic-Generator/.

[46] Paris Eloy. 2018. The Network Expect Project. Retrieved 13 April, 2020 from https://www.netexpect.org/.

[47] Paul Emmerich, Sebastian Gallenmiiller, Daniel Raumer, Florian Wohlfart, and Georg Carle. 2015. MoonGen: A script-
able high-speed packet generator. In Proceedings of the 2015 Internet Measurement Conference. ACM, New York, NY,
275-287. DOI : https://doi.org/10.1145/2815675.2815692

[48] Paul Emmerich, Sebastian Gallenmiiller, Gianni Antichi, Andrew W. Moore, and Georg Carle. 2017. Mind the gap:
A comparison of software packet generators. In Proceedings of the Symposium on Architectures for Networking and
Communications Systems IEEE Press, Piscataway, NJ, 191-203. DOI : https://doi.org/10.1109/ANCS.2017.32

[49] Excentis Inc. 2013. ByteBlower—Making Accurate IP Testing Quick and Easy. Retrieved 13 April, 2020 from https:
/[www.excentis.com/products/byteblower.

[50] Wu-chang Feng, Ashvin Goel, Abdelmajid Bezzaz, Wu-chi Feng, and Jonathan Walpole. 2003. Tcpivo: A high-
performance packet replay engine. In Proceedings of the ACM SIGCOMM Workshop on Models, Methods and Tools
for Reproducible Network Research. ACM, 57-64.

[51] B. Fink and R. Scott. 2006. Nuttcp, v5. 3.1. Retrieved 23 Jan, 2020 from https://www.nuttcp.net/.

[52] Matias Fontanini. 2019. Libtins: C++ Packet Sniffing and Crafting Library. Retrieved 13 April, 2020 from https://
libtins.github.io/.

[53] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda. 2010. MAWILab: Combining diverse anomaly
detectors for automated anomaly labeling and performance benchmarking. In Proceedings of the 6th International
Conference ACM CoNEXT’10. ACM, 12 pages.

[54] ACM (Association for Computing Machinery). 2006—2017. In Proceedings of the ACM SIGCOMM Workshop on Mobility
in the Evolving Internet Architecture (MobiArch). (all published papers in the proceedings).

[55] ACM (Association for Computing Machinery). 2006—-2018. In Proceedings of the ACM SIGCOMM Symposium on SODN
Research. (all published papers in the proceedings).

[56] ACM (Association for Computing Machinery). 2006—-2018. In Proceedings of the ACM SIGCOMM Workshop on Network
Meets AI & ML (NetAlI). (all published papers in the proceedings).

[57] ACM (Association for Computing Machinery). 2006-2018. In Proceedings of the ACM Workshop on Challenged Net-
works. (all published papers in the proceedings).

[58] ACM (Association for Computing Machinery). 2006-2018. In Proceedings of the Special Interest Group on Data Com-
munication. (all published papers in the proceedings).

[59] ACM (Association for Computing Machinery). 2008-2018. In Proceedings of the ACM SIGCOMM Workshop on Net-
worked Systems for Developing Regions. (all published papers in the proceedings).

[60] ACM (Association for Computing Machinery). 2008-2018. In Proceedings of the ACM Workshop on the Economics of
Networks, Systems and Computation. (all published papers in the proceedings).

[61] ACM (Association for Computing Machinery). 2010-2011. In Proceedings of the ACM SIGCOMM Workshop on Home
Networks. (all published papers in the proceedings).

[62] ACM (Association for Computing Machinery). 2010-2018. In Proceedings of the ACM SIGCOMM Workshop on Hot
Topics in Networks. (all published papers in the proceedings).

[63] ACM (Association for Computing Machinery). 2011. In Proceedings of the ACM SIGCOMM workshop on Green net-
working. (all published papers in the proceedings).

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

https://trex-tgn.cisco.com/
https://www.cisco.com/c/en/us/support/docs/dial-access/asynchronous-connections/10340-ttcp.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/whitepaper-c11-741490.html
https://www.zti-communications.com/lantrafficv2/
http://www.grid.unina.it/software/ITG/link.php
https://sites.google.com/site/catkaratpacketbuilder/
http://www.donfraysoftware.com/MITS/MITS.htm
https://www.ecdata.com/Products/Stateful-Traffic-Generator/
https://www.netexpect.org/
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1109/ANCS.2017.32
https://www.excentis.com/products/byteblower
https://www.nuttcp.net/
https://libtins.github.io/

28:20 O. A. Adeleke et al.

[64] ACM (Association for Computing Machinery). 2011-2017. In Proceedings of the ACM Conference on Information-
Centric Networking. (all published papers in the proceedings).

[65] ACM (Association for Computing Machinery). 2012-2014. In Proceedings of the ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking. (all published papers in the proceedings).

[66] ACM (Association for Computing Machinery). 2014-2016. In Proceedings of the ACM Workshop on All Things Cellular.
(all published papers in the proceedings).

[67] ACM (Association for Computing Machinery). 2015. In Proceedings of the ACM SIGCOMM Workshop on Ethics in
Networked Systems Research. (all published papers in the proceedings).

[68] ACM (Association for Computing Machinery). 2016. In Proceedings of the ACM SIGCOMM Workshop on Fostering
Latin-American Research in Data Communication. (all published papers in the proceedings).

[69] ACM (Association for Computing Machinery). 2016-2018. In Proceedings of the Applied Networking Research Work-
shop. (all published papers in the proceedings).

[70] ACM (Association for Computing Machinery). 2017-2018. In Proceedings of the ACM SIGCOMM 2018 Workshop on
IoT Security and Privacy. (all published papers in the proceedings).

[71] ACM (Association for Computing Machinery). 2017-2018. In Proceedings of the ACM SIGCOMM Workshop on Mobile
Edge Communications. (all published papers in the proceedings).

[72] ACM (Association for Computing Machinery). 2017-2018. In Proceedings of the Asia-Pacific Workshop on Networking.
(all published papers in the proceedings).

[73] V.S.Frostand B. Melamed. 1994. Traffic modeling for telecommunications networks. IEEE Communications Magazine
32, 3 (March 1994), 70-81. DOI : https://doi.org/10.1109/35.267444

[74] GL Communications. 2020. GL Traffic Generator: Simulation & Analysis Network Traffic Characteristics. Retrieved

13 April, 2020 from https://www.gl.com/traffic-generators.html.

Eric Lee Helvey. 1998. Trafgen: An Efficient Approach to Statistically Accurate Artificial Network Traffic Genera-

tion. Ph.D. Dissertation. Ohio University. Retrieved 13 April, 2020 from https://etd.ohiolink.edu/pg_10?0::NO:10:

P10_ACCESSION_NUM:ohiou1176494135.

[76] *Hobbit™. 1995. Netcat. Netcat. Retrieved from http://nc110.sourceforge.net/.

[77] Colasoft Inc. 2020. Colasoft Packet Builder - Colasoft. Retrieved 13 April, 2020 from https://www.colasoft.com/
download/products/download_packet_builder.php.

[78] Rick Jones. 1996. Netperf. Hewlett-Packard. Retrieved 13 April, 2020 from https://github.com/HewlettPackard/

netperf.

Roel Jonkman. 1994. Netspec: Philosopy, Design and Implementation. Ph.D. Dissertation. University of Kansas,

Lawrence, Kansas, USA.

[80] K. Kant, V. Tewari, and R. Iyer. 2001. Geist: A generator for E-commerce & internet server traffic. In Proceedings of

the 2001 IEEE International Symposium on Performance Analysis of Systems and Software. IEEE, 49-56. DOI : https:

//doi.org/10.1109/ISPASS.2001.990676

Stein Karyl. 1998. Spak-0.6b - Arbitrary Packet Generator/Sender. Retrieved 07 May, 2020 from http://static.lwn.net/

Iwn/1998/0312/a/spak.html.

Konstantinos V. Katsaros, George Xylomenos, and George C. Polyzos. 2012. GlobeTraff: A traffic workload generator

for the performance evaluation of future internet architectures. In Proceedings of the 2012 5th International Conference

on New Technologies, Mobility and Security. 1-5. DOI : https://doi.org/10.1109/NTMS.2012.6208742

Keysight Technologies. 2020. BreakingPoint VE - Virtualized Security Resilience Testing for Enterprise-Wide Net-

works. Retrieved 13 April, 2020 from https://www.ixiacom.com/products/breakingpoint-ve.

Keysight Technologies. 2020. Ixchariot - Instant Performance Assessment of Complex Networks from Pre- to Post-

Deployment. Retrieved 13 Sept., 2020 from https://www.ixiacom.com/products/ixchariot.

Keysight Technologies. 2020. Ixnetwork - L2-3 Network Infrastructure Performance Testing That Scales to Business

Needs. Retrieved 13 April, 2020 from https://www.ixiacom.com/products/ixnetwork.

[86] S.S. Kolahi, S. Narayan, D. D. T. Nguyen, and Y. Sunarto. 2011. Performance monitoring of various network traffic
generators. In Proceedings of the 2011 UkSim 13th International Conference on Computer Modelling and Simulation.
501-506. DOI : https://doi.org/10.1109/UKSIM.2011.102

[87] G. Kramer. 2014. Generator of Self-Similar Traffic. Retrieved 13 April, 2020 from http://research.glenkramer.com/
code/trf_gen3.shtml.

[88] Charles Krasic. 2002. Home Page of Mxtraf. Retrieved 13 April, 2020 from http://mxtraf.sourceforge.net/.

[89] Chia-Yu Ku, Ying-Dar Lin, Yuan-Cheng Lai, Pei-Hsuan Li, and Kate Ching-Ju Lin. 2012. Real traffic replay over wlan
with environment emulation. In Proceedings of the 2012 IEEE Wireless Communications and Networking Conference.
IEEE, 2406-2411. DOI : https://doi.org/10.1109/WCNC.2012.6214199

[90] Hakawati Security Lab. 2018. Traffic Generators. Hakawati Security Lab. Retrieved 13 April, 2020 from http://www.
hakawati.co.kr/318.

(75

[

—
~
=}

—

—
[el}
—_

—

—
o0
Do

—

r—v ,—
o oo
= @
LY ==

—
[
w

[

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

https://doi.org/10.1109/35.267444
https://www.gl.com/traffic-generators.html
https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:ohiou1176494135
http://nc110.sourceforge.net/
https://www.colasoft.com/download/products/download_packet_builder.php
https://github.com/HewlettPackard/netperf
https://doi.org/10.1109/ISPASS.2001.990676
http://static.lwn.net/lwn/1998/0312/a/spak.html
https://doi.org/10.1109/NTMS.2012.6208742
https://www.ixiacom.com/products/breakingpoint-ve
https://www.ixiacom.com/products/ixchariot
https://www.ixiacom.com/products/ixnetwork
https://doi.org/10.1109/UKSIM.2011.102
http://research.glenkramer.com/code/trf_gen3.shtml
http://mxtraf.sourceforge.net/
https://doi.org/10.1109/WCNC.2012.6214199
http://www.hakawati.co.kr/318

Network Traffic Generation: A Survey and Methodology 28:21

[91] ESnet/Lawrence Berkeley National Laboratory. 2014. iperf3: A TCP, UDP, and SCTP network bandwidth measurement
tool. Energy Sciences Network (ESnet). Retrieved 13 April, 2020 from https://github.com/esnet/iperf.
[92] Naval Research Laboratory. 2019. Multi-Generator (MGEN). U.S. Naval Research Laboratory. Retrieved from https:
//www.nrl.navy.mil/itd/ncs/products/mgen.
[93] Juha Laine, Sampo Saariso, and Ruii Prior. 2002. RUDE & CRUDE Traffic Generator. Retrieved 13 April, 2020 from
http://rude.sourceforge.net/.
[94] Kun-Chan Lan and John Heidemann. 2002. Rapid Model Parameterization from Traffic Measurements. ACM Trans-
actions on Modeling and Computer Simulation 12, 3 (2002), 201-229.
[95] LBNL/ICSI berkley lab. 2005. LBNL/LCSI Enterprise Tracing Project - Trace File Download. Retrieved 13 April, 2020
from http://www.icir.org/enterprise-tracing/download.html.
[96] W.E.Leland, M. S. Taqgqu, W. Willinger, and D. V. Wilson. 1994. On the self-similar nature of Ethernet traffic (extended
version). IEEE/ACM Transactions on Networking 2, 1 (Feb. 1994), 1-15. DOI : https://doi.org/10.1109/90.282603
[97] Leo Liang. 2016. IPGen IP Packets Generator. Retrieved 13 April, 2020 from https://sourceforge.net/projects/ipgen/.
[98] Jukka Manner. 2006. Jugi’s Traffic Generator (jtg). Retrieved 13 April, 2020 from http://www.netlab.tkk.fi/~jmanner/
jtg.html.
[99] Robert McMahon, Battu Kaushik, and Tim Auckland. 2005. Iperf: The TCP/UDP bandwidth measurement tool. NLAN-
R/DAST. Retrieved 13 April, 2020 from https://sourceforge.net/projects/iperf2/.
[100] Sudhakar Mishra, Shefali Sonavane, and Anil Gupta. 2015. Study of traffic generation tools. International Journal of
Advanced Research in Computer and Communication Engineering 4, 6 (2015), 4-7.
[101] S.Molnar, P. Megyesi, and G. Szab6. 2013. How to validate traffic generators? In Proceedings of the 2013 IEEE Interna-
tional Conference on Communications Workshops. IEEE 1340-1344. DOI : https://doi.org/10.1109/ICCW.2013.6649445
[102] David Mosberger and Tai Jin. 1998. Httperf — a Tool for Measuring Web Server Performance. SIGMETRICS Perfor-
mance Evaluation Review 26, 3 (Dec. 1998), 31-37. DOI : https://doi.org/10.1145/306225.306235
[103] Dan Nagle. 2020. Packet Sender - Free Utility to for Sending and Receiving of Network Packets. Retrieved 13 April,
2020 from https://PacketSender.com/.
[104] Nathan Jeff. 2013. Nemesis Packet Injection Tool Suite. Retrieved 13 April, 2020 from http://nemesis.sourceforge.net/.
[105] UH Netlab. 2019-2021. Traffic Generators Survey. UH Netlab, University of Houston. Retrieved 13 April, 2020 from
http://docs.uh-netlab.org/projects/surveypaperanalysis.
[106] Juniper Networks. 2020. WRAP17 Traffic Generator. Retrieved 13 April, 2020 from https://github.com/Juniper/
warpl7.
[107] NMap. 2019. Nping - Network Packet Generation Tool/Ping Utiliy. Retrieved 12 April, 2020 from https://nmap.org/
nping/.
[108] University of Zilina. 2019. Network Information Library - Traffic Generators. Network Information Library, University
of Zilina. Retrieved 12 April, 2020 from https://nil.uniza.sk/traffic- generators-list/.
[109] Robert Olsson. 2005. Pktgen the linux packet generator. In Proceedings of the Linux Symposium, Vol. 2, 11-24.
[110] Omnicor. 2018. Network Testing Tools. Retrieved 12 April, 2020 from http://www.omnicor.com/products/network-
testing-tools.
[111] Open Source Initiative. 2020. The Open Source Definition. Retrieved 12 April, 2020 from https://opensource.org/osd.
[112] Alan Ott. 2020. PlayCap Packet Replay. Retrieved 12 April, 2020 from https://github.com/signal11/PlayCap.
[113] Srivats P. 2017. Ostinato — Packet Generator. Ostinato. Retrieved 12 April, 2020 from https://ostinato.org/.
[114] Pacgen Team. 2013. Pacgen Packet Generator. Retrieved 12 April, 2020 from https://sourceforge.net/projects/pacgen/.
[115] Packet Data Systems Ltd. 2019. IP-Traffic Test and Measure. Retrieved 12 April, 2020 from https://www.pds-test.co.
uk/products/ip_test_measure.html.
[116] Packeth Team. 2018. packeth. Retrieved 12 April, 2020 from http://packeth.sourceforge.net/packeth/Home.html.
[117] PB Software. 2018. Network Traffic Generator and Monitor. Retrieved 12 April, 2020 from http://pbsftwr.tripod.com/
id17.html.
[118] Esteban Pellegrino. 2020. pellegre/libcrafter. Retrieved 12 April, 2020 from https://github.com/pellegre/libcrafter.
[119] Postel. 2017. TG Tool. Retrieved 12 April, 2020 from http://www.postel.org/tg/.
[120] ACM SIGCOMM Conference Proceedings. 2006-2019. In Proceedings of the Publications within the Proceedings of all
ACM SIGCOMM Conferences and Journals.
[121] USENIX Conference Proceedings and Journals. 2006-2019. In Proceedings of the Publications within the Proceedings
of all USENIX Conferences and Journals.
[122] Vinay Ribeiro, Ryan King, and Niels Hoven. 2003. Poisson Traffic Generator. Retrieved 12 April, 2020 from http:
/[www.spin.rice.edu/Software/poisson_gen/.
[123] Chloé Rolland, Julien Ridoux, Bruno Baynat, and Vincent Borrel. 2008. Using litGen, a realistic IP traffic model, to
evaluate the impact of burstiness on performance. In Proceedings of the 1st International Conference on Simulation
Tools and Techniques for Communications, Networks and Systems & Workshops. Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering (ICST), 26.

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

https://github.com/esnet/iperf
https://www.nrl.navy.mil/itd/ncs/products/mgen
http://rude.sourceforge.net/
http://www.icir.org/enterprise-tracing/download.html
https://doi.org/10.1109/90.282603
https://sourceforge.net/projects/ipgen/
http://www.netlab.tkk.fi/~jmanner/jtg.html
https://sourceforge.net/projects/iperf2/
https://doi.org/10.1109/ICCW.2013.6649445
https://doi.org/10.1145/306225.306235
https://PacketSender.com/
http://nemesis.sourceforge.net/
http://docs.uh-netlab.org/projects/surveypaperanalysis
https://github.com/Juniper/warp17
https://nmap.org/nping/
https://nil.uniza.sk/traffic-generators-list/
http://www.omnicor.com/products/network-testing-tools
https://opensource.org/osd
https://github.com/signal11/PlayCap
https://ostinato.org/
https://sourceforge.net/projects/pacgen/
https://www.pds-test.co.uk/products/ip_test_measure.html
http://packeth.sourceforge.net/packeth/Home.html
http://pbsftwr.tripod.com/id17.html
https://github.com/pellegre/libcrafter
http://www.postel.org/tg/
http://www.spin.rice.edu/Software/poisson_gen/

28:22 O. A. Adeleke et al.

[124] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren. 2015. Inside the social network’s
(datacenter) network. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication.
ACM, 123-137.

[125] M. Samidi. 2004. Real-Time Voice Traffic Generator. Retrieved 12 April, 2020 from http://static.lwn.net/lwn/1998/

0312/a/spak.html.

Henning Schulzrinne. 2017. Traffic Generators. Columbia University. Retrieved 12 April, 2020 from https://www.cs.

columbia.edu/~hgs/internet/traffic-generator.html.

Douglas C. Sicker, Paul Ohm, and Dirk Grunwald. 2007. Legal issues surrounding monitoring during network re-

search. In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. ACM, New York, NY, 141-148.

DOI: https://doi.org/10.1145/1298306.1298307

Charles Robert Simpson and George F. Riley. 2004. NETI@home: A distributed approach to collecting end-to-end

network performance measurements. In Proceedings of the Passive and Active Network Measurement. Chadi Barakat

and Ian Pratt (Eds.), Lecture Notes in Computer Science. Springer, Berlin, 168-174. DOI : https://doi.org/10.1007/978-
3-540-24668-8_17

Peter Siska, Marc Ph Stoecklin, Andreas Kind, and Torsten Braun. 2010. A flow trace generator using graph-based

traffic classification techniques. In Proceedings of the 6th International Wireless Communications and Mobile Comput-

ing Conference. ACM, 457-462.

Skaion Corporation. 2015. Skaion Traffic Generation System (TGS). Retrieved 12 April, 2020 from http://www.skaion.

com/.

SolarWinds. 2020. Network Traffic Generator—WAN Killer Test. Retrieved 12 April, 2020 from https://www.

solarwinds.com/engineers-toolset/use-cases/traffic- generator-wan-killer.

Joel Sommers, Hyungsuk Kim, Paul Barford, and Paul Barford. 2004. Harpoon: A Flow-level Traffic Generator for

Router and Network Tests. SSGMETRICS Performance Evaluation Review 32, 1 (June 2004), 392-392. DOI : https://doi.

org/10.1145/1012888.1005733

Dug Song. 2000. Fragroute. Retrieved 12 April, 2020 from https://www.monkey.org/~dugsong/fragroute/.

Spirent Communications. 2020. Spirent TestCenter—Verifying Network and Cloud Evolution - Spirent. Retrieved 12

April, 2020 from https://www.spirent.com/products/testcenter.

Wireshark Team. 2019. Wireshark - Tools. Wireshark Foundation. Retrieved 12 April, 2020 from https://wiki.

wireshark.org/Tools.

Qbone Testbed. 2013. Gen_send, Gen_recv: A Simple Udp Traffic Generator Application. Retrieved 12 April, 2020

from http://www.citi.umich.edu/projects/qbone/generator.html.

TFGen Team. 2000. TFGen Traffic Generator. Retrieved 12 April, 2020 on http://www.pgcgi.com/hptools/.

Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs. 2005. Iperf: The TCP/UDP bandwidth measure-

ment tool. Iperf. Retrieved 12 April, 2020 from http://dast.nlanr.net/Projects.

Triticom. 2006. LANDecoder32 LAN Protocol Analyzer and Traffic Monitor. Retrieved 12 April, 2020 from http:

//www.netunlim.com/master_site/pdfs/LD32_V3.4.pdf.

Antoine Varet and Nicolas Larrieu. 2014. Realistic network traffic profile generation: Theory and practice. Computer

and Information Science 7, 2 (2014), pp-1.

Matti Vattinen. 2019. epb - Ethernet Packet Generator. Retrieved 12 April, 2020 from http://m-a-z.github.io/epb/.

Kashi Venkatesh Vishwanath and Amin Vahdat. 2008. Evaluating distributed systems: Does background traffic mat-

ter? In Proceedings of the USENIX Annual Technical Conference. USENIX, 227-240.

Kashi Venkatesh Vishwanath and Amin Vahdat. 2009. Swing: Realistic and responsive network traffic generation.

IEEE/ACM Transactions on Networking 17, 3 (2009), 712-725.

[144] K. V. Vishwanath and A. Vahdat. 2009. Swing: Realistic and responsive network traffic generation. I[EEE/ACM Trans-

actions on Networking 17, 3 (June 2009), 712-725. DOI : https://doi.org/10.1109/TNET.2009.2020830

Joerg Wallerich. 2008. NSWEB Traffic Generator. Retrieved 12 April, 2020 from https://www.net.t-labs.tu-berlin.de/

~joerg/.

Ulrich Weber. 2019. mausezahn. Retrieved 12 April, 2020 from https://github.com/uweber/mausezahn.

Michele C. Weigle. 2011. Web Traffic Generation in NS2 with PackMime-HTTP. Retrieved 12 April, 2020 from https:

/lwww.cs.odu.edu/~mweigle/research/packmime/.

Michele C. Weigle, Prashanth Adurthi, Félix Hernandez-Campos, Kevin Jeffay, and F. Donelson Smith. 2006. Tmix:

A tool for generating realistic Tcp application workloads in NS2. SIGCOMM Computer Communication Review 36, 3

(July 2006), 65-76. DOI : https://doi.org/10.1145/1140086.1140094

Keith Wiles. 2019. The DPDK Pktgen Application - Documentation. Retrieved 12 April, 2020 from https://pktgen-

dpdk.readthedocs.io/en/latest/.

W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. 1997. Self-similarity through high-variability: Statistical

analysis of Ethernet LAN traffic at the source level. IEEE/ACM Transactions on Networking 5, 1 (Feb 1997), 71-86.

DOI: https://doi.org/10.1109/90.554723

[126

[l

[127

[

[128

=

[129

—

[130

[t

[131

—

[132

—

[133
[134

[lani bt

[135

=

[136

—

[137
[138

[t

[139

[

[140

=

[141
[142

—

[143

—_

[145

=

[146
[147

e

[148

[t

[149

—

[150

=

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

http://static.lwn.net/lwn/1998/0312/a/spak.html
https://www.cs.columbia.edu/~hgs/internet/traffic-generator.html
https://doi.org/10.1145/1298306.1298307
https://doi.org/10.1007/978-3-540-24668-8_17
http://www.skaion.com/
https://www.solarwinds.com/engineers-toolset/use-cases/traffic-generator-wan-killer
https://doi.org/10.1145/1012888.1005733
https://www.monkey.org/~dugsong/fragroute/
https://www.spirent.com/products/testcenter
https://wiki.wireshark.org/Tools
http://www.citi.umich.edu/projects/qbone/generator.html
http://www.pgcgi.com/hptools/
http://dast.nlanr.net/Projects
http://www.netunlim.com/master_site/pdfs/LD32_V3.4.pdf
http://m-a-z.github.io/epb/
https://doi.org/10.1109/TNET.2009.2020830
https://www.net.t-labs.tu-berlin.de/~joerg/
https://github.com/uweber/mausezahn
https://www.cs.odu.edu/~mweigle/research/packmime/
https://doi.org/10.1145/1140086.1140094
https://pktgen-dpdk.readthedocs.io/en/latest/
https://doi.org/10.1109/90.554723

Network Traffic Generation: A Survey and Methodology 28:23

[151] Tao Ye, Darryl Veitch, Gianluca lannaccone, and S. Bhattacharya. 2005. Divide and conquer: PC-based packet trace
replay at OC-48 speeds. In Proceedings of the 1st International Conference on Testbeds and Research Infrastructures for
the Development of Networks and Communities. IEEE, 262-271.

[152] Andy Yeow and Chin Heng. 2006. Bit-Twist: Libpcap-Based Ethernet Packet Generator. Retrieved from http://bittwist.
sourceforge.net/.

[153] Petr Zach, MARTIN Pokorny, and ARNOST Motycka. 2013. Design of software network traffic generator. Recent
Advances in Circuits, Systems, Teleccommunications and Control 1, 26 (2013), 244-251.

[154] Sebastian Zander, David Kennedy, and Grenville Armitage. 2005. Kute a High Performance Kernel-Based Udp Traffic

Engine. Technical Report 0501118A. Swinburne University of Technology. Centre for Advanced Internet Architec-
tures (CAIA).

Received October 2020; revised June 2021; accepted September 2021

ACM Computing Surveys, Vol. 55, No. 2, Article 28. Publication date: January 2022.

http://bittwist.sourceforge.net/

