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Abstract—In the digital era, the increasing demand for network
traffic necessitates strategic network infrastructure planning. Ac-
curate modeling of traffic demand through cellular traffic genera-
tion is crucial for optimizing base station deployment, enhancing
network efficiency, and fostering technological innovation. In this
paper, we introduce STOUTER, a spatio-temporal diffusion model
for cellular traffic generation. STOUTER incorporates noise into
traffic data through a forward diffusion process, followed by a
reverse reconstruction process to generate realistic cellular traffic.
To effectively capture the spatio-temporal patterns inherent in
cellular traffic, we pre-train a temporal graph and a base station
graph, and design the Spatio-Temporal Feature Fusion Module
(STFFM). Leveraging STFFM, we develop STUnet, which esti-
mates noise levels during the reverse denoising process, successfully
simulating the spatio-temporal patterns and uncertainty variations
in cellular traffic. Extensive experiments conducted on five cellular
traffic datasets across two regions demonstrate that STOUTER
improves cellular traffic generation by 52.77% in terms of the
Jensen-Shannon Divergence (JSD) metric compared to existing
models. These results indicate that STOUTER can generate cellular
traffic distributions that closely resemble real-world data, provid-
ing valuable support for downstream applications.

Index Terms—Cellular traffic, data generation, diffusion model,
spatio-temporal graph.

I. INTRODUCTION

A S A fundamental component of mobile wireless commu-
nication infrastructure, cellular networks serve as crit-

ical enablers for advancing smart cities, Internet of Things
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(IoT), autonomous driving, and telemedicine. The prolifera-
tion of Fifth Generation (5G) technology has further cemented
their role as indispensable tools for modern information sys-
tems [1], supporting massive device connectivity while deliv-
ering high-speed, low-latency communication and intelligent
cross-industry services [2]. Amidst accelerating societal dig-
italization, escalating traffic demands necessitate efficient in-
frastructure operation and flexible resource allocation, making
optimal network planning and strategic resource distribution
persistent challenges [3], [4], [5], [6], [7], [8].

Cellular traffic prediction has emerged as a key strategy for
dynamic resource allocation [9], [10], [11], [12]. However,
existing methods face two critical limitations: (1) dependence
on extensive historical traffic data for target areas leads to
computationally intensive processes and prohibitive prediction
latency, and (2) restricted access to real-time operator data due
to privacy concerns impedes practical implementation. Adding
to these issues, suboptimal base station deployments in many
regions create additional complexities for network optimization.
Current deployment strategies — including manual site selec-
tion [13], drone-assisted placement [14], and shared infrastruc-
ture [15] — often prioritize geographical factors over actual
traffic demand patterns, underscoring the need for more holistic
solutions.

Synthetic cellular traffic generation offers a promising alter-
native by simulating network behavior using open-source data.
While deep learning approaches like autoregressive CNNs [16]
and GAN-based methods [17] have demonstrated success in
device-level traffic synthesis, their scalability to large-scale base
station deployments remains constrained. Recent large-scale
GAN variants [18], [19] incorporate urban knowledge graphs
and multi-period classification but face practical barriers, in-
cluding data acquisition challenges [20], [21], mode collapse
risks [22], [23], and limited diversity in generated outputs [24].
Moreover, existing methods predominantly model predefined
spatio-temporal patterns while neglecting inherent traffic uncer-
tainties within identical contexts.

In this paper, we propose a novel cellular traffic generation
method capable of effectively capturing the spatio-temporal
characteristics of a region while simulating the uncertainty in
traffic fluctuations. This approach aims to provide valuable
data support for research on network resource optimization and
deployment. However, designing such a method poses signifi-
cant challenges due to the complex patterns inherent in cellular
traffic:
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� Long-term and short-term periodic patterns: Cellular traf-
fic exhibits intricate temporal patterns, including daily fluc-
tuations that correlate with work and recreational sched-
ules, as well as weekly trends characterized by distinct
weekday and weekend usage behaviors.

� Spatial patterns: Cellular traffic varies across different base
stations due to differing human activity levels. Densely
populated areas typically experience higher network traffic
than sparsely populated ones, complicating the delineation
of work and residential zones for each base station.

� Uncertainty pattern: Even within the same base station
or region, cellular traffic can exhibit significant irregular
fluctuations due to the unpredictable nature of human
activities. Variations in user demand can arise from dif-
fering bandwidth requirements of various applications and
services.

To address these challenges, we present STOUTER, a Spatio-
Temporal diffusiOn model for cellUlar Traffic genERation.
First, we design a temporal graph structure to represent the
hourly and daily temporal relationships in cellular traffic, en-
abling the capture of both short-term and long-term periodic
variations. Second, to distinguish cellular traffic patterns among
base stations in various regions, we construct a base station graph
that integrates Point of Interest (POI) information and distance
relationships between base stations. Third, to model uncertain
fluctuations in cellular traffic, we design a generative diffusion
model that incorporates spatio-temporal features into the traffic
generation process. During the denoising phase, we use an initial
Gaussian distribution to effectively simulate traffic uncertainty.
Additionally, we introduce the Spatio-Temporal Feature Fusion
Module (STFFM), which preserves traffic periodicity and base
station-specific patterns during the generation process. This
allows us to reconstruct cellular traffic data with realistic spatio-
temporal characteristics from an initial Gaussian distribution
characterized by uncertainty. In summary, the contributions of
our work are as follows:
� We propose a spatio-temporal diffusion model for large-

scale cellular traffic generation that simulates uncertain
variations effectively.

� We construct a temporal graph to model both long-term
and short-term traffic patterns, and develop a base station
graph to extract spatial traffic characteristics, integrating
these into the traffic generation process through STFFM
within Spatio-Temporal UNet (STUnet).

� Extensive experiments conducted on multiple real cel-
lular traffic datasets from two regions demonstrate that
STOUTER improves traffic generation by 52.77% in terms
of the Jensen-Shannon Divergence (JSD) metric compared
to state-of-the-art methods, indicating its capability to gen-
erate long-term data closely resembling real traffic and
providing valuable support for downstream applications.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III introduces the
preliminary definitions and complex patterns of cellular traf-
fic, following with an overview of our STOUTER framework.
Sections IV and V elaborate the spatio-temporal graph model
and the diffusion-based traffic generation model, respectively.

Section VI evaluates the performance of STOUTER, and
Section VII finally concludes the paper.

II. RELATED WORK

A. Cellular Traffic Generation

Traditional methods primarily relied on mathematical models
to generate cellular traffic. The traffic generators were designed
to synthesize data that closely resembled real-world network
traffic in a closed-loop manner [25], [26], and the generated
traffic data is mainly used for testing network equipment, ser-
vices, and security protocols [27], rather than to assist in the
deployment of cellular base stations.

Recently, some researchers have explored machine learning-
based approaches for traffic generation, such as employing
autoregressive models [16], [28] and GAN models [17], [29],
[30] to synthesize cellular traffic data. Although these methods
protect data privacy while generating traffic for a single device,
they primarily focus on traffic generation for a limited range or
even one single network device. In contrast, large-scale cellular
traffic generation must consider city-wide base station deploy-
ment. In our work, we take into account the topological structure
between base stations at a city scale, allowing us to model the
spatial relationships among them effectively.

Some studies [18], [19] have proposed GAN methods for
generating city-scale cellular traffic, by leveraging urban knowl-
edge graphs to capture the spatial semantics of base stations.
For example, ADAPTIVE [18] addresses the issue of limited
historical data in 5G base station deployment by designing a
deep transfer learning framework for the generation of cellular
traffic. This framework transfers the traffic knowledge graph
from a source city to a target city, allowing the GAN model to
incorporate learned spatial and temporal patterns. Hui et al. [19]
developed a GAN model that integrates multi-cycle patterns to
simulate daily, weekly, and long-term traffic cycle patterns, with
the aim of replicating the long-term performance of cellular
traffic. However, GAN-based traffic generation methods often
suffer from data instability [24]. Artifacts such as unrealistic
or noisy data points may emerge, compromising the practical-
ity of the generated traffic data. In addition, during training,
GAN models are prone to mode collapse [22], [23], which
limits the diversity of generated data and hinders their ability to
fully capture the underlying distribution of real-world cellular
traffic.

Furthermore, STK-Diff [31] uses urban knowledge graphs
as semantic information and develops a spatio-temporal
knowledge-driven diffusion model for mobile traffic generation.
Urban knowledge graphs utilize graph structures to organize
relationships between entities, such as user behavior, spatio-
temporal associations, and functional complementarity. They re-
quire the integration of multi-source data, such as trajectory data,
socioeconomic indicators, and text descriptions, and depend
on domain knowledge to build semantic relationships. Without
domain knowledge, these graphs are susceptible to semantic
gaps [32]. Furthermore, challenges such as data source limita-
tions, privacy protection, and intellectual property restrictions
make it difficult to obtain urban knowledge graphs [20], [21].
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Therefore, OpenDiff [33] proposes a mobile traffic generation
method based on publicly available data, including population
density, points of interest (POIs), and satellite imagery. However,
the dynamic nature of human activities limits the reliability of
such data, as statistical indicators like population density may
become outdated, failing to accurately reflect real-time mobile
traffic trends. POI is a fundamental data used to represent specific
locations, and can be easily accessed and downloaded from
OpenStreetMap [34] or other platforms. Different from previous
works, we integrate the spatial relationships of base stations
with surrounding POI information to extract potential spatial
patterns in cellular traffic, which provides a more comprehensive
representation of real-world traffic dynamics.

B. Cellular Traffic Prediction

Cellular traffic prediction models forecast future traffic vol-
umes of base stations using historical data, aiding network man-
agement and supporting various network applications. Effective
prediction requires not only temporal modeling of traffic patterns
at individual base stations but also the ability to capture spatial
dependencies and variations in future traffic distributions within
a given area [35].

LSTM-GPR [36] combines Long Short-Term Memory
(LSTM) networks with Gaussian Process Regression (GPR) to
predict traffic for individual cell base stations. CCSANet [37]
employs a convolutional LSTM and a self-attention network
based on correlation to predict traffic in complex cellular net-
works. STA-GCN [9] and STEP [10] utilize graph convolutional
networks (GCNs) for spatio-temporal predictions of cellular
traffic, while ST-Tran [11] and ST-InducedTrans [12] integrate
time and space Transformer modules for spatio-temporal cellu-
lar traffic prediction.

However, traffic prediction relies on a substantial amount of
historical data, which limits its applicability to traffic generation
task. Additionally, long-term predictions may suffer from cumu-
lative errors, leading to progressive declines in model accuracy
over extended time horizons.

C. Time Series Modeling Based on Diffusion Model

Denoising Diffusion Probabilistic Models (DDPM) [38] are
generative models that reconstruct target data samples, such as
images or audio, by iteratively removing noise from noisy inputs
through a step-by-step denoising process. Diffusion models
have been extensively applied to time series prediction [39],
interpolation [40], [41], and data generation [42], [43] due
to their ability to model complex and high-dimensional data
distributions. Compared to GAN models, diffusion models can
produce more stable outputs and are less prone to mode collapse.
By iteratively refining random noise, these models effectively re-
store the underlying data distribution, improving both accuracy
and quality in the generated samples.

For example, DiffSTG [44] designs UGnet to apply diffusion
models to spatio-temporal graph prediction, addressing uncer-
tainty and complex spatio-temporal dependencies in data model-
ing. DiffTraj [45] employs diffusion models for generating GPS
trajectories, which tackles the privacy issues in location-based

data. KSTDiff [46] introduces a knowledge-enhanced spatio-
temporal diffusion model for urban pedestrian flow prediction,
enabling pedestrian flow data generation without reliance on
historical records.

Building on these advancements, our study applies generative
diffusion models to large-scale cellular traffic generation in base
stations, tackling the challenges of spatio-temporal variability
and uncertainty in network traffic.

III. PRELIMINARY

In this section, we first introduce the basic definitions and
complex patterns of cellular traffic. Then, we present the
overview of STOUTER.

A. Problem Definition

Definition 1 (Base Station): Given an area where a large-scale
base station is deployed, the set of cellular base stations is rep-
resented as B = {bi}Nbs

i=1 , where Nbs denotes the total number
of base stations.

Definition 2 (Cellular Traffic): Given a set of cellular base
stations, its corresponding cellular traffic data is denoted by
X = {Xi}Nbs

i=1 . The traffic for the i-th base station is represented
by Xi = {xi,j}Nt

j=1, where Nt indicates the length of the time
series. The traffic for the i-th base station during time period j
is represented as xi,j = {vi,jk }Nts

k=1, where Nts is the number of
timestamps within each period.

For example, if each period corresponds to one day and is
divided into 24 time slots, then vi,jk refers to the network traffic
volume at the i-th base station during the k-th hour on the j-th
day.

Problem 1 (Cellular Traffic Generation): Based on the defi-
nitions above, the cellular traffic generation problem is defined
as follows: given a base station bi and the target cellular traffic
generation period j, the corresponding cellular traffic xi,j is
generated. Our goal is to generate the cellular traffic X̂ for
the target cellular base stations B̂ within the specified time
period based on certain historical cellular traffic X and its
corresponding cellular base stations B. The objectiveness is to
minimize the distribution difference between X̂ and X.

B. Complex Patterns of Cellular Traffic

To analyze the complex patterns of cellular traffic, we vi-
sualized Internet traffic data from two typical base stations
in the Milan dataset (see more details about the dataset in
Section VI-A), as shown in Fig. 1. Specifically, Fig. 1(a) il-
lustrates the average daily traffic at these two base stations from
November 2 to January 1, 2014. Fig. 1(b) and (c) display traffic
statistics over a 7-day period for each base station, segmented
into hourly intervals. Noting that these traffic data are normalized
by Min-Max normalization.

Pattern 1. Long-term and short-term periodic patterns: Anal-
ysis of the two-month traffic data in Fig. 1(a) reveals that network
traffic is lowest on Sundays (November 3, 10, 17, 24 and Decem-
ber 1, 8, 15, 22, 29), while midweek traffic is consistently higher.
This recurring weekly pattern indicates long-term periodicity in
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Fig. 1. Statistics on (a) daily Internet traffic and (b, c) hourly Internet traffic
for two typical base stations, where ‘BS_1’ and ‘BS_2’ represent Base Station
1 and Base Station 2 respectively.

cellular traffic. Similarly, Fig. 1(b) and (c) show consistent daily
fluctuations, where traffic peaks and declines follow a regular
hourly pattern, highlighting short-term periodicity. These obser-
vations suggest that cellular traffic exhibits structured variations
on different time scales. Therefore, it is essential to effectively
capture both long-term trends and short-term fluctuations. Rely-
ing solely on a single periodic pattern to represent time periods
may fail to fully capture these periodic dependencies. Instead,
a modeling approach that integrates both long-term temporal
patterns and short-term correlations is necessary for an accurate
representation of traffic.

Pattern 2. Spatial pattern: As shown in Fig. 1(a), the traffic
volumes differ significantly between the two base stations, with
Base Station 1 experiencing lower network traffic than Base Sta-
tion 2. However, their overall traffic trends remain similar, with
less traffic on weekends compared to weekdays. Additionally,
Base Station 1 exhibits a downward trend in traffic, whereas Base
Station 2 shows an opposite pattern, further highlighting spatial
heterogeneity in cellular traffic. This suggests that while base
stations may share global traffic trends, they also exhibit distinct
local variations. Effectively modeling both inter-station similar-
ities and local differences remains a key challenge in cellular
traffic generation, necessitating an approach that can distinguish
unique spatial patterns while preserving overall correlations.

Pattern 3. Uncertainty pattern: As mentioned in Section I,
network traffic at the same base station within the same time
period exhibits inherent uncertainty. For example, in Fig. 1(a),
while the weekly traffic patterns of a base station remain similar
in trend throughout four weeks, the actual traffic volumes vary
considerably. If a traffic generation model accounts only for
spatio-temporal patterns without incorporating uncertainty, it
will produce fixed-volume traffic, failing to capture the natural
fluctuations present in real cellular traffic. Therefore, effective
modeling of these unpredictable variations is essential to ensure
that generated traffic accurately reflects both large-scale patterns
and fine-grained volume differences observed in real-world data.

C. Overview

Fig. 2 illustrates the framework of STOUTER, which employs
a denoising network that integrates spatio-temporal information

Fig. 2. Framework of STOUTER.

Fig. 3. Spatio-temporal graph autoencoder.

to iteratively refine generated data and produce large-scale cel-
lular traffic data.

First, we build a temporal graph structure to capture the
underlying temporal periodic patterns by embedding temporal
graph nodes. Second, to differentiate the spatial characteristics
of various base station regions, we construct a graph-based
representation of base stations, encoding each base station node
using a graph autoencoder. Third, we design a spatio-temporal
denoising diffusion model and introduce Spatio-Temporal UNet
(STUnet) as the denoising network. During training, STUnet
first generates noisy traffic data through the forward diffusion
process. Then, in the backward process, it recovers realistic
traffic by progressively refining samples drawn from a ran-
dom Gaussian distribution, effectively simulating uncertainty in
cellular traffic. Leveraging temporal periodic patterns and spa-
tial base station representations, STUnet denoises the sampled
traffic data, ultimately generating realistic cellular traffic that
preserves inherent uncertainty patterns.

IV. SPATIO-TEMPORAL GRAPH MODELING

In this section, we present the construction of the temporal
graph and the base station graph, which capture the tempo-
ral periodicity and spatial dependencies of cellular traffic, re-
spectively. We then utilize graph autoencoders to obtain latent
representations of the corresponding graph nodes, preserving
essential spatio-temporal features for downstream traffic gener-
ation. As shown in Fig. 3, the encoder generates corresponding
node representations for the temporal graph and base station
graph. The decoder then reconstructs the spatio-temporal graph.
Finally, the model is optimized by calculating the loss between
the reconstructed spatio-temporal graph and the original spatio-
temporal graph.
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Fig. 4. The temporal graph, where the nodes consist of time periods and the
edges consist of two types: daily relation and hourly relation.

A. Temporal Graph for Time Period Encoding

To capture the temporal variations in cellular traffic, we should
consider its long-term and short-term characteristics. To this end,
we construct a temporal graph structure, as illustrated in Fig. 4.

We model hourly cellular traffic statistics as graph nodes,
where a single day is divided into 24 time periods, each corre-
sponding to one of the 24 graph nodes. Adjacent temporal nodes
are connected by directed edges, representing the short-term
hourly progression of traffic throughout the day. Additionally, to
capture long-term temporal dependencies, we introduce directed
edges between the same hourly nodes across different days
within a week (Sunday to Saturday, 7 days). These connections
encode the chronological relationships between corresponding
time periods, effectively modeling the recurring weekly traffic
patterns.

Let Gt = (Vt,At,Ht) denote the temporal graph, where Vt is
the set of nodes, each corresponding to a one-hour time period.
At consists of the edges that describe connections, which are cat-
egorized into two types: the first type represents hour-level tem-
poral relationships, capturing sequential dependencies within a
24-hour cycle; the second type represents daily-level temporal
relationships, modeling recurring traffic patterns across the same
hour in different days over a week.Ht is the initial representation
of the nodes, encoded using one-hot encoding.

The node representations for the temporal graph are learned
through a graph neural network (GNN), which embeds and trains
the nodes to capture their structural relationships. To achieve
this, we utilize the encoder-decoder framework introduced in
GraphMAE [47] to facilitate the learning of these represen-
tations. Given its strong capability in capturing graph struc-
tural information, we adopt the Graph Isomorphism Network
(GIN) [48] as both the graph encoder and decoder in the learning
process:

Ft = GINE (At,Ht) ,

Zt = GIND (At,Ft) , (1)

where Ft denotes the temporal node representation produced
by the encoder, and the decoder generates the restored node
representation Zt.

B. Base Station Graph for Spatial Representation

Traffic patterns vary across different regions due to human
activity dynamics. To effectively differentiate cellular traffic
characteristics across base stations, we perform representation

Fig. 5. The base station graph, where the nodes consist of base stations and
eight types of POIs (i.e., Education, Medical, Public, Entertainment, Traffic,
Food, Shop, and Others). Within the threshold dBS range, edges are established
between base stations, and base stations cover POIs.

learning on cellular base stations and construct a base station
graph, which captures the spatial dependencies and relationships
among them.

Let Gs = (Vs,As,Hs) denote the base station graph, where
Vs represents the set of base station nodes and As defines
the adjacency relationships between base stations. The duality
of wireless network coverage (covered/uncovered) fulfills the
essential requirement for connectivity in real-world scenarios.
In particular, during cellular network planning, binary edges can
reduce the complexity of the model and are more suitable for the
topological analysis of large-scale networks [49]. Consequently,
an undirected binary edge is established between two base
stations if their distance is less than a predefined threshold,
denoted as dBS . Hs represents the initial feature representation
of the base station graph. In large-scale urban base station
deployments, 99% of the base stations are located within 1 km
of the nearest base station [50]. Therefore, we set the threshold
dBS = 1 km in our study.

Fig. 5 illustrates the base station graph, where POIs within
each base station’s coverage area are categorized into eight
groups: Education, Medical, Public, Entertainment, Traffic,
Food, Shop, and Others. To generate the initial node representa-
tions, we compute the number of POIs in each category covered
by a given base station, ensuring that the spatial characteristics
of different regions are well captured.

For base station graph representation learning, we em-
ploy an encoder-decoder model based on GNNs, following
a similar node embedding approach as used for temporal
graphs. Considering that GCNs [51] excel in node classification
tasks, we thus adopt GCNs as the encoder-decoder architec-
ture to learn the graph node representations of base stations,
i.e.:

Fs = GCNE (As,Hs) ,

Zs = GCND (As,Fs) , (2)

where Fs denotes the encoded base station node representation,
andZs denotes the reconstructed node representations generated
by the decoder.
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C. Optimization Function

To effectively pretrain the temporal graph and base station
graph, we optimize the encodersGINE andGCNE by minimiz-
ing the scaled cosine error (SCE) loss function, which ensures
that the learned node representations retain essential structural
and feature information:

Lpre =
1

|V|
∑

vi∈V,hi∈H,zi∈Z

(
1− hT

i zi
‖hi‖ · ‖zi‖

)γ

, (3)

where the scaling factor γ > 1, vi represents the final node
embedding from Vt or Vs, hi denotes the original node feature
from Ht or Hs, and zi is the restored node feature from the
decoder. We introduce a scaling factor to the cosine error loss
to assign higher weights to samples with larger errors in the
reconstructed representation.

V. DIFFUSION-BASED TRAFFIC GENERATION

In this section, we introduce a spatio-temporal diffusion
model for cellular traffic generation, incorporating both the
spatio-temporal patterns and the uncertainty pattern.

The diffusion model simulates traffic uncertainty through a
two-phase process: forward diffusion and reverse denoising. In
the forward process, the model progressively injects noise into
real traffic data, gradually transforming it into a near-random
prior distribution. In the reverse process, the model starts from
randomly sampled noise and iteratively removes noise to recon-
struct realistic traffic samples. To effectively capture uncertainty
variations in traffic data, we propose a cellular traffic generation
method based on a spatio-temporal diffusion framework. This
method employs two Markov chains: one is a forward Markov
chain that adds noise to real traffic data, mapping the real traffic
distribution to a predefined prior distribution (e.g., a Gaussian
distribution). The other is a reverse Markov chain that recon-
structs the true traffic distribution from the prior distribution by
iteratively refining generated traffic samples. Given the complex
spatio-temporal patterns of cellular traffic, it is crucial to not only
learn the noise patterns in traffic generation but also to align
the generated data with real-world spatio-temporal structures
during the denoising process. To this end, we design STUnet to
effectively guide the traffic reconstruction process to preserve
realistic patterns.

A. Forward Cellular Traffic Noise Adding Process

In the forward diffusion process, cellular traffic data is incre-
mentally corrupted by adding noise. As noise accumulates, the
data distribution gradually approaches a Gaussian distribution.

Given a real cellular traffic data sample x ∼ q(x),1 we gener-
ate a sequence of noisy traffic data x0 ∼ xT through a forward
Markov chain, where noise is progressively introduced. The
time steps for noise addition are indexed as 1 ∼ T , where x0

represents the original noise-free traffic sample, and x1 ∼ xT

denotes the traffic data with increasing levels of noise. This pro-
cess can be interpreted as gradually erasing the spatio-temporal

1To simplify the presentation, we omit the superscript of xi,j as x.

characteristics of the real traffic distribution, such that the final
state xT approximates a Gaussian distribution. The process is
described by the following equation:

q (x1:T |x0) =

T∏
t=1

q (xt|xt−1) . (4)

The transition probability function in this diffusion pro-
cess follows a Gaussian distribution, where the mean is μ =√
1− βtxt−1 and the variance is σ2 = βt, i.e.:

q(xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (5)

where βt ∈ (0, 1) is a hyperparameter controlling the diffusion
intensity at time step t and I represents the identity matrix. The
sequence {β1, β2, . . ., βT } is designed to be increasing. As the
time step t progresses, βt gradually increases, resulting in more
noise being added at each step. We utilize linear scheduling to
compute the intermediate noise levels for the βt sequence, start-
ing from a value of 10−4 and ending at 0.02. Using this Gaussian
transition kernel, we can derive the probability function q(xt|x0)
at any time step t ∈ {0, 1, . . ., T}. Defining αt = 1− βt and
αt =

∏t
i=0 ai, we have

q(xt|x0) = N (
xt;

√
αtx0, (1− αt) I

)
. (6)

Consequently, the noisy traffic sample at time step t can be
computed by combining the original traffic data and Gaussian
noise:

xt =
√
αtx0 +

√
1− αtε, (7)

where ε ∼ N (0, I) denotes the added Gaussian noise.

B. Reverse Cellular Traffic Data Denoising Process

In the reverse process, we first sample a random Gaussian
distribution to serve as the initial state for the generated cellular
traffic. Then, we iteratively refine the traffic data through a
reverse denoising operation to restore the expected distribution.

Since directly computing q(x0|x1:T ) is intractable, we follow
Denoising Diffusion Probabilistic Models (DDPM) [38], which
define the reverse process as a Markov chain parameterized by
a neural network. We thus train a neural network pθ to model
this reverse denoising process.

Given an initial Gaussian-distributed sample xT , the reverse
diffusion process from time step T to 0 follows:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt),

pθ(xt−1|xt) = N (xt−1;μθ (xt, t) ,Σθ (xt, t)) . (8)

Based on (6), assuming that x0 is known, the posterior distribu-
tion can be expressed as:

q(xt−1 | xt, x0) = N
(
xt−1; μ̃(xt, x0), β̃tI

)
. (9)

Meanwhile, with the Bayesian formula, we have:

q(xt−1|xt, x0) =
q(xt, xt−1, x0)

q(xt, x0)
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Fig. 6. Denoising network for the noise level prediction in reverse denoising process. (a) provides an overview of the STUnet framework. (b) depicts the internal
structural composition of each STUnet block. (c) illustrates the STFFM, which is used for learning the spatio-temporal patterns of cellular traffic.

=
q(xt|xt−1, x0) · q(xt−1, x0)

q(xt|x0) · q(x0)

=
q(xt|xt−1, x0) · q(xt−1|x0) · q(x0)

q(xt|x0) · q(x0)

=
q(xt|xt−1, x0) · q(xt−1|x0)

q(xt|x0)
. (10)

According to (6), we can determine q(xt−1|x0) and q(xt|x0).
By combining this information with (7), (9) and (10), we can
derive

μ̃t =
1√
αt

(
xt − βt√

1− ᾱt
εt

)
,

β̃t =
1− ᾱt−1

1− ᾱt
βt, (11)

where β̃t can be computed directly from the diffusion hyperpa-
rameter βt. Therefore, the mean μθ(xt, t) in (8) is computed as:

μθ =
1√
αt

(
xt − βt√

1− ᾱt
εθ(xt, t)

)
, (12)

where θ represents the trainable parameters of the denoising
neural network. εθ(xt, t) is the estimated noise component,
learned by STUnet, which we introduce later.

Finally, cellular traffic data is reconstructed at t = 0 by iter-
atively applying the reverse Markov chain to remove noise step
by step.

C. Spatio-Temporal Fusion Denoising Network

1) Spatio-Temporal Unet: To facilitate the reverse denoising
process of the spatio-temporal diffusion model, we design the
Spatio-Temporal UNet (STUnet), as illustrated in Fig. 6(a).
Within STUnet, we introduce the Spatio-Temporal Feature Fu-
sion Module (STFFM), which guides the model in capturing
temporal periodic patterns and spatial patterns of cellular traffic.

The STUnet framework consists of two main components: an
encoder that corresponds to the down-sampling process (from
Down-Block to Mid-Block) and a decoder that corresponds
to the up-sampling process (from Mid-Block to Up-Block). In
the Down-Block, extracted features are cropped during down-
sampling, while in the Up-Block, the decoder concatenates these
cropped features for output. Finally, the predicted εθ(xt, t) =
STUnet(xT , t) is produced via a convolutional layer.

2) Spatio-Temporal Unet Blocks: Fig. 6(b) illustrates the
three core components of STUnet: Down-Block, Mid-Block,
and Up-Block. STUnet consists of Down-Block and Up-Block
networks with the same number of layers, which are connected
by Mid-Block. Each STUnet block is composed of STFFM
and attention networks. The Down-Block ultimately outputs
through a down-sampling convolutional layer, while the Up-
Block reconstructs the final traffic data through an up-sampling
convolutional layer.

In the Mid-Block, the attention network between the two
STFFMs is implemented using a multi-head attention mecha-
nism. This mechanism projects the sequence information en-
coded by the encoder into multiple subspaces and extracts
various semantic information output by the STFFM. In our
work, we set the number of attention heads to 4, allowing us
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to focus on the diverse features of the input, including historical
traffic, time step, spatial semantics, and temporal semantics.
Given xin ∈ R

n×m represents the intermediate layer input of
STUnet Blocks, wherem andndenote the feature dimension and
sequence length of the cellular traffic, respectively. The attention
network in the Mid-Block can be expressed as:

Qi = xinW
Q
i ,

Ki = xinW
K
i ,

Vi = xinW
V
i ,

hei = softmax

(
QiK

T
i√

dk

)
Vi,

MHAtt(Q,K, V ) = Concat
({hei}4i=1

)
WO, (13)

where i ∈ {1, 2, 3, 4} and dk = m/4 represent the sequence
number and feature dimension of each attention head.
WQ

i ,WK
i ,WV

i ∈ R
m×dk and WO ∈ R

m×m are learnable pa-
rameter matrices.

In the Down-Block and Up-Block, the attention network
following the two STFFMs is implemented using a multi-head
linear attention mechanism. This approach reduces the compu-
tational complexity of the attention layer during the multi-layer
encoding and decoding process while effectively capturing the
coarse-grained semantic information of the cellular traffic. Each
head of the linear attention mechanism can be expressed as:

Q̂i = Softmax(Qi, dim = −2),

K̂i = Softmax(Ki, dim = −1),

LAtt(Qi,Ki, Vi) = Q̂i ·
(
K̂T

i Vi

)
, (14)

where Q̂i and K̂i denote the normalization of the query in
the feature dimension and the normalization of the key in the
sequence dimension, respectively. The importance weights of
spatio-temporal features, time step features, and historical traffic
features are dynamically adjusted through the multi-head atten-
tion layers in STUnet.

3) Spatio-Temporal Feature Fusion Module: As depicted in
Fig. 6(c), the temporal graphGt and base station graphGs are pre-
trained to obtain the corresponding time period representation
Ft and base station representation Fs, which serve as spatio-
temporal priors for the generated traffic data. To enhance the
denoising learning, we design the spatio-temporal feature fusion
module (STFFM) for each residual block in STUnet, combining
the extracted spatio-temporal information with the diffusion step
information t to guide the restoration process.

We employ sinusoidal position encoding to represent the step
position information TSEmb for diffusion steps. Subsequently,
we utilize a multilayer perceptron (MLP) to embed the diffusion
step t:

TSEmb = MLP (SinPosEmb(t)) . (15)

Given base station embedding Fs and time period embedding
Ft, the spatio-temporal representationFst is generated by a fully
connected layer. Then Fst is combined with the diffusion step

information to serve as guidance for the diffusion generation
process:

Fst = FC (TSEmb + FC (Concat (Fs,Ft))) , (16)

For a given randomly sampled xT , the model first applies
a convolution operation and then integrates it with the learned
spatio-temporal representation to predict the final noise:

x̂in = Conv (xin) ,

xout = ELU (x̂in + Conv (x̂in + Fst)) . (17)

where xin is the input to the current network layer, while xout is
the output for the next layer. ELU(·) represents the Exponential
Linear Unit (ELU) activation function, which improves stability
in training.Conv(·) denotes the convolution operation, essential
for feature extraction.

Finally, during the up-sampling process, the output from the
corresponding down-sampling residual block is cropped and
concatenated, ensuring accurate feature reconstruction.

D. Optimization Function

During network training, STUnet is optimized by minimiz-
ing the difference between the predicted traffic noise and the
actual traffic noise. Given the real noisy data as ε, ε is sampled
by Gaussian distribution ε ∼ N (0, I). By incorporating ε, the
values of xt at time step t can be computed using (7). The noise
component εt is then calculated as follows:

εt =
(
1−√

αt

)
x0 −

√
1− αtε. (18)

Given that εθ(xt, t) denotes the predicted noise component
at time step t, as generated by the STUnet, we train the spatio-
temporal fusion denoising network using the L1 loss function,
which is defined as:

L = Ex0,εt

[||εt − εθ(xt, t)||2
]
. (19)

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments and analysis
to validate the effectiveness of our STOUTER using the real-
world public datasets.

A. Experimental Settings

1) Datasets: We conduct experiments using the public com-
munication dataset known as Call Detailed Records (CDRs)
from Italy, curated and provided by the Semantics and Knowl-
edge Innovation Lab. The datasets cover two regions: com-
munication data from Milan and Trentino [52]. For both the
Milan and Trentino datasets, five types of traffic informa-
tion are recorded in detail: Internet, Received-SMS, Sent-SMS,
Incoming-Call, and Outgoing-Call. Specifically, Internet indi-
cates the network usage for Internet accessing, Incoming-Call
and Outgoing-Call correspond to voice call data, and Received-
SMS and Sent-SMS correspond to SMS communication data.
Milan dataset collection period spanned from November 1, 2013,
to January 1, 2014. Trentino dataset collection period spanned
from November 1, 2013, to December 30, 2013.
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TABLE I
STATISTICS ABOUT THE DATASETS OF MILAN AND TRENTINO

We divide the base station areas according to the grid systems
provided in the datasets. In Milan, the number of designated base
station areas is 10,000, while in Trentino, it is 11,466. In addition,
some existing studies [37] have merged the sent and received
data for traffic analysis tasks. We also use Call (aggregated from
Incoming-Call and Outgoing-Call) and SMS (aggregated from
Received-SMS and Sent-SMS) as experimental datasets. After
data preprocessing, the detailed information of the experimental
dataset is presented in Table I.

2) Baselines: We compare our model against two categories
of cellular traffic generation methods, that is GAN-based and
VAE-based methods. Additionally, to verify the effectiveness
of our proposed STUnet, we also compare the diffusion model
approach with WaveNet-based [53] as the denoising network
framework. The baseline methods are described below.
� TCN-GAN [18]: Generative Adversarial Network (GAN)

consists of two components: a generator and a discrim-
inator. The generator transforms a random noise vector,
which is typically sampled from a prior distribution such
as a Gaussian distribution, into realistic data samples.
The discriminator distinguishes between synthetic traffic
samples generated by the generator and real traffic data.
In this method, we exclude the classification of long-term
and short-term periodic traffic as well as the urban knowl-
edge graph and instead adopt the core TCN-GAN network
structure for cellular traffic generation.

� VAE [54]: Variational Autoencoder (VAE) consists of two
components: an encoder and a decoder. The encoder maps
the input data to a low-dimensional latent space, while
the decoder reconstructs the vectors from the latent space
back to the original data. This method originally employs a
hybrid convolutional VAE for text generation. In our exper-
iments, we adapt this model for cellular traffic generation
by modifying its architecture to accommodate traffic data
characteristics.

� DiffWave [53]: DiffWave is a diffusion model primarily
used for audio generation. It features a non-autoregressive
structure, which effectively leverages the strong capabili-
ties of sound wave modeling. In our experiments, we use
WaveNet from DiffWave as the denoising network for a
diffusion model based cellular traffic generation method.

Due to DiffTraj [45] focusing on GPS trajectory generation
and lacking the necessary information to construct knowledge
graphs, we cannot directly compare our method with DiffTraj,
KSTDiff [46], STK-Diff [31], and DiffSTG [44].

3) Evaluation Metrics: To measure the numerical discrep-
ancy between the generated cellular traffic and real traffic data,
we employ commonly used error metrics, including Mean Ab-
solute Error (MAE) and Root Mean Square Error (RMSE).

Let Xg and Xr denote the generated traffic and the real traffic
across all distributions, respectively. As defined in Section III-A,
X g

i and X r
i represent the generated traffic and the real traffic of

the i-th base station. Thus, MAE is calculated as:

MAE(Xg,Xr) =
1

n

n∑
i=1

|X g
i −X r

i |, (20)

and RMSE is calculated as:

RMSE(Xg,Xr) =

√√√√ 1

n

n∑
i=1

(X g
i −X r

i )
2
, (21)

where n is the total number of base stations.
Additionally, we ultilize Jensen-Shannon Divergence

(JSD) [55] to evaluate the similarity between probability
distributions of generated and real traffic. JSD is a
symmetric divergence measure based on Kullback-Leibler
(KL) divergence, making it well-suited for comparing two
distributions. The KL divergence between the generated traffic
and the real traffic can be expressed as:

KL(Xg ‖ Xr) =
∑
i

Xg(i) log
Xg(i)

Xr(i)
. (22)

The JSD between Xg and Xr is then calculated as:

JSD(Xg,Xr) =
KL(Xg ‖ Xm) +KL(Xr ‖ Xm)

2
, (23)

where Xm =
Xg+Xr

2 denotes the average distribution between
Xg and Xr.

4) Implementation: All experiments were executed on a
server equipped with an NVIDIA GeForce RTX 3090 GPU
(64 GB VRAM), an Intel(R) Core(TM) i7-10700 K CPU
(3.80 GHz), 80 GB of system RAM, and implemented using
Python 3.7 with the PyTorch deep learning framework.

B. Overall Performance

Tables II and III presents the results of the performance
evaluation of our model compared to baseline models in multiple
datasets from Milan and Trentino. Specifically, Table II presents
the evaluation results for the Incoming-Call, Outgoing-Call,
Received-SMS, and Sent-SMS datasets. Table III presents the
evaluation results for the Internet, Call and SMS datasets.

The results show that our method outperforms the baselines
over the metrics of MAE, RMSE, and JSD. For example, on the
Internet traffic datasets from Milan and Trentino, our model on
average improves MAE by 19.23%, RMSE by 18.35%, and JSD
by 52.77%, when compared to the baselines.
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TABLE II
PERFORMANCE COMPARISONS OF OUR PROPOSED STOUTER AND BASELINE METHODS USING THE METRICS OF MAE, RMSE, AND JSD (×10−4)

TABLE III
PERFORMANCE COMPARISONS OF OUR PROPOSED STOUTER AND BASELINE METHODS USING THE METRICS OF MAE, RMSE, AND JSD (×10−4)

In contrast, TCN-GAN exhibits the worst performance among
the models. This is mainly due to the instability of GAN-
generated data, which lacks consistency without strong guidance
signals such as knowledge graphs and detailed traffic cycle
patterns. Meanwhile, VAE and DiffWave demonstrate varying
strengths in different datasets. However, their performance is
not consistently superior across all datasets, leading to dataset-
dependent biases.

Our method achieves suboptimal results on the JSD met-
ric for the Received-SMS datasets from both regions and the
SMS dataset from Trentino. This is due to the high random-
ness in the Received-SMS dataset compared to other datasets,
where cellular traffic patterns exhibit weak correlations over
different time periods and base stations, making distribution
modeling more challenging. Since our model integrates spatio-
temporal information via STFFM, it introduces less stochas-
tic variability compared to VAE. Despite this, our model
consistently achieves the best overall performance in other
datasets.

TABLE IV
COMPARISONS OF MODEL OVERHEADS

We analyze the time and space complexity of our pro-
posed model and baseline models using the Trentino Internet
dataset, including comparisons on model parameters, training
time, and inference time. As shown in Table IV, the TCN-
GAN method has the most parameters due to its dual net-
work design (generator and discriminator). STOUTER’s spatio-
temporal fusion module, utilizing a multi-layer U-Net, results
in slightly more parameters than VAE and DiffWave. Training
times show that TCN-GAN takes the longest, while STOUTER’s
is slightly higher than VAE’s due to its complex denoising
structure. For inference cost, with a batch size of 128, diffusion
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Fig. 7. Performance impact of temporal graph and base station graph for Internet, Call, SMS, Incoming-call (‘Call-In’ for short), Outgoing-Call (‘Call-Out’ for
short), Received-SMS (‘SMS-In’ for short), and Sent-SMS (‘SMS-Out’ for short) datasets from Milan and Trentino.

model-based methods require longer times than TCN-GAN and
VAE.

Overall, while STOUTER incurs slightly more memory over-
head and inference time, it achieves much better generation
results. Given that the purpose of cellular traffic generation is
often to create more data for research in areas with limited
datasets, the demand for real-time performance could not be
high. Therefore, the trade-off of increased inference time for
more realistic generated data is acceptable.

C. Ablation Study and Variants Analysis

1) Ablation of Spatio-Temporal Graph Module: To access
the impact of temporal graph representation learning and
base station graph representation learning on the model’s per-
formance, we conduct ablation experiments by comparing
STOUTER with three modified versions: STOUTER without
the time period representation (denoted as w/o TG), STOUTER
without the base station representation (denoted as w/o BSG),
and STOUTER without both the time period and base station
representations (denoted as w/o ST). By evaluating these vari-
ants, we analyze how spatio-temporal feature learning enhances
the diffusion model’s ability to generate realistic cellular traffic
patterns.

We present the performance comparison of these models
across three evaluation metrics (MAE, RMSE, and JSD) on
the Milan and Trentino datasets in Fig. 7. The results indicate
that removing the temporal and base station graph represen-
tation modules degrades performance. Notably, for the SMS
data, the optimization effect on JSD is relatively weaker. This
is particularly evident in the Received-SMS dataset, where
the spatio-temporal correlation of the overall traffic behavior
patterns is inherently weak, limiting the effectiveness of the
spatio-temporal model in learning its distribution. Despite this,
for other metrics, our model consistently demonstrates superior

performance, validating the importance of integrating spatio-
temporal representations in cellular traffic generation.

2) Variants of Spatio-Temporal Graph Modeling: When
modeling spatio-temporal graphs, we employed the GIN [48]
graph autoencoder for temporal graphs and the GCN [51] graph
autoencoder for base station graphs. To assess their effective-
ness, we conducted a variant analysis of graph neural networks.
For temporal graphs, we compared three graph node encoding
methods: GAT [56], GCN, and GraphSAGE [57]. For base
station graphs, we evaluated three variant methods: GAT, GIN,
and GraphSAGE.

The results are presented in Table V. Our methods demon-
strate superiority over other variant methods, achieving an im-
provement of at least 1.74% across various metrics. The GIN
model, with its strong ability to capture graph structural in-
formation, effectively identifies both long-term and short-term
periodicity in temporal graphs. Meanwhile, for the base station
graph, modeling the correlations among surrounding base sta-
tions is crucial. The GCN excels in this regard by effectively
capturing the connections between base station nodes and using
the features of neighboring nodes to update the representation
of each graph node.

3) Variants of Fusion Mechanism: In STFFM, we utilize
concatenation and fully connected layers for spatio-temporal
feature fusion. To evaluate the effectiveness of feature fusion,
we analyze several variants of dynamic feature fusion meth-
ods, including dynamic weight fusion (WeightFu) [58], gated
mechanism fusion (GateFu) [58], cross-attention mechanism
(CrossAtt) [59], and decoupled fusion (DecFu) [60]. The experi-
mental results of the fusion mechanism variants are summarized
in Table VI.

Our method effectively retains original temporal and spa-
tio features, leveraging a fully connected layer for complex
spatio-temporal interactions. Compared to GateFu, which has
weaker feature interaction modeling but lower computational

Authorized licensed use limited to: UNIVERSITY OF ABERDEEN. Downloaded on December 25,2025 at 02:45:53 UTC from IEEE Xplore.  Restrictions apply. 



268 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 25, NO. 1, JANUARY 2026

TABLE V
PERFORMANCE COMPARISONS OF MODEL VARIANTS USING DIFFERENT GRAPH MODELING METHODS OVER METRICS OF MAE, RMSE, AND JSD (×10−4)

TABLE VI
PERFORMANCE COMPARISONS OF MODEL VARIANTS FOR FUSION

MECHANISMS WITHIN THE STFFM USING THE METRICS OF MAE, RMSE,
AND JSD (×10−4)

complexity, and WeightFu, better for strong local correlations,
our approach excels in capturing long-term traffic features.
CrossAtt struggles with noise due to its large parameters, lead-
ing to poor performance, while DecFu risks disrupting crucial
interactions. Overall, STFFM enhances feature extraction using
multi-head attention.

D. Parameter Study

During training the diffusion model, the diffusion step plays
a crucial role in determining the performance of the model.
The diffusion step refers to the number of iterations during
which noise is added in the forward process and subsequently
removed in the reverse process. This parameter directly impacts
the quality of generated traffic data. We conduct sensitivity
experiments on the diffusion step using the Internet datasets
from Milan and Trentino.

Fig. 8 shows the performance trends of the model under
different diffusion step values by varying t = from 10 to 1000.
Our findings indicate that a higher diffusion step improves model
performance, leading to generated traffic data that more closely
aligns with real traffic patterns. In addition, stability thresholds
vary by dataset. In the Milan Internet dataset, performance
metrics stabilize at t = 600. In the Trentino Internet dataset,
stability is achieved at t = 800. Overall, increasing the diffusion
step enhances data generation quality, but beyond a certain
threshold, further increases yield diminishing improvements.

E. Visualization

We conduct a visualization analysis of long-term generated
traffic using the Trentino Internet dataset. Fig. 9 presents the

Fig. 8. Performance comparison of different diffusion steps.

visualization results for one month. We compare our STOUTER
with three baselines: DiffWave [53], TCN-GAN [18], and
VAE [54].

Fig. 9 reveals that the Internet traffic generated by DiffWave
and VAE struggles to capture the periodic patterns of real
traffic, resulting in significant deviations where the generated
traffic is substantially larger or smaller than the actual traf-
fic during certain hours. The traffic generated by TCN-GAN
is generally cluttered and does not align with the real traf-
fic trends, with only a small portion of the generated data
closely matching the actual values. In contrast, our method
effectively reconstructs the overall trend of real Internet traffic,
with only a few instances showing relatively minor deviations.
We calculated the indicators for the visualization samples. It

Authorized licensed use limited to: UNIVERSITY OF ABERDEEN. Downloaded on December 25,2025 at 02:45:53 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: SPATIO-TEMPORAL DIFFUSION MODEL FOR CELLULAR TRAFFIC GENERATION 269

Fig. 9. Visualization comparison on the generated traffic in Trentino’s Internet dataset, where ‘Generated traffic’ represents the traffic generated by different
generation models (i.e., STOUTER, DiffWave, TCN-GAN, and VAE), and the ‘Ground Truth’ represents the real traffic.

Fig. 10. Performance of traffic prediction modeling using the Internet datasets
from Milan and Trentino.

shows that STOUTER (MAE:0.18, RMSE:0.2558) outperforms
VAE (MAE:0.2923, RMSE:0.4528), DiffWave (MAE:0.2359,
RMSE:0.3384), and TCN-GAN (MAE:1.5976, RMSE:2.5625).
It indicates that STOUTER has a better understanding of traffic
uncertainty and can minimize significant deviations from true
values.

F. Case Study

To evaluate the usability of the generated cellular traffic
data, we perform traffic prediction modeling using the Internet
datasets from Milan and Trentino. We employ Long Short-Term
Memory (LSTM) networks [36] as the traffic predictor. The
experimental training set consists of generated traffic data, while
real traffic data is used for testing and validation. To facilitate
effective comparison, we also train the model using real traffic
data and contrast the results with those obtained from training
on generated data.

Fig. 10 illustrates the prediction results over the following
week, evaluated using two metrics: MAE and RMSE. It is evi-
dent that the prediction model trained on real traffic data achieves
the best performance across both datasets. Furthermore, our
model outperforms other generative methods, producing traffic
data that yield prediction errors within 0.1 of the model trained
on real data in both MAE and RMSE. These results confirm that
the cellular traffic data generated by STOUTER is highly usable,
making it a viable alternative to real traffic data for supporting
downstream applications. In addition, Accurate traffic forecast-
ing enables network operators to effectively deploy base stations
in high-traffic areas, optimize resource allocation, and enhance
network capacity and coverage. By training the predictor with
traffic data generated by STOUTER, forecasting accuracy can be
improved, providing more reliable data support for base station
deployment.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose STOUTER, a novel spatio-temporal
fusion diffusion model for cellular traffic generation. This ap-
proach incorporates spatio-temporal relationships into diffusion
model-based cellular traffic generation process, and thus can
produce realistic and high-quality synthetic traffic data. We
validate the performance of STOUTER through extensive ex-
periments on large-scale and real-world cellular traffic datasets.
The results demonstrate significant performance improvements
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in various metrics compared to existing generative models, and
confirm that STOUTER-generated traffic closely aligns with
real distributions, making it highly effective for downstream
applications such as network optimization, traffic prediction,
and resource allocation.

In future work, we would like to explore the diverse character-
istics of cellular traffic to generate more realistic traffic patterns
when multi-source datasets, including meteorology, population,
events, and disasters, are available. Additionally, STOUTER
requires historical data for training when generating cellular traf-
fic, we thus consider using transfer learning to apply knowledge
from data-rich areas to regions lacking data support for cellular
traffic generation studies. Furthermore, we will evaluate the
effectiveness of STOUTER in assisting with network planning
if feasible.
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