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Datasets of labeled network traces are essential for a multitude of machine learning (ML) tasks in networking,
yet their availability is hindered by privacy and maintenance concerns, such as data staleness. To overcome
this limitation, synthetic network traces can often augment existing datasets. Unfortunately, current synthetic
trace generation methods, which typically produce only aggregated flow statistics or a few selected packet
attributes, do not always suffice, especially when model training relies on having features that are only
available from packet traces. This shortfall manifests in both insufficient statistical resemblance to real traces
and suboptimal performance on ML tasks when employed for data augmentation. In this paper, we apply
diffusion models to generate high-resolution synthetic network traffic traces. We present NetDiffusion1, a
tool that uses a finely-tuned, controlled variant of a Stable Diffusion model to generate synthetic network
traffic that is high fidelity and conforms to protocol specifications. Our evaluation demonstrates that packet
captures generated from NetDiffusion can achieve higher statistical similarity to real data and improved ML
model performance than current state-of-the-art approaches (e.g., GAN-based approaches). Furthermore, our
synthetic traces are compatible with common network analysis tools and support a myriad of network tasks,
suggesting that NetDiffusion can serve a broader spectrum of network analysis and testing tasks, extending
beyond ML-centric applications.
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1 INTRODUCTION

Modern networks are increasingly reliant on machine learning (ML) techniques for a wide range
of management tasks, ranging from security to performance optimization. A central impediment
when training network-focused ML models is the scarcity of labeled network datasets, as their
collection and sharing are often associated with high costs and privacy concerns, particularly when
data is collected from real-world networks [9, 42, 87, 88, 121]. Unfortunately, existing public datasets
rarely receive updates, making them static and unable to reflect evolving network behaviors [68, 74,
105]. These limitations hinder the ability to train robust ML models that accurately reflect evolving
real-world network conditions.

These challenges can be addressed through the creation of new synthetic network traces based
on existing datasets. This approach aims to preserve the inherent characteristics of network traffic
while introducing variations, thereby enhancing dataset size and diversity [78, 96, 115, 122, 135, 140,
142, 143]. Unfortunately, current state-of-the-art synthetic trace generation methods, particularly
those based on Generative Adversarial Networks (GANs)-based methods [78, 104, 139, 140, 142],
are not always sufficient for producing high-quality synthetic network traffic. Specifically, these
approaches tend to focus on a limited set of attributes or statistics, as early machine learning for
network tasks often relied on basic flow statistics for classification [17, 33, 44, 65, 76, 77, 100]. With
recent ML advancements utilizing detailed raw network traffic to achieve enhanced classification
accuracy [10, 23, 39, 83, 84, 103, 114, 128, 136, 141, 149], there is a clear need for synthetic traffic
generation that includes the intricate, potentially unforeseen patterns present in full network traces.
Existing traffic generation methods face two main issues: (1) a lack of statistical similarity with real
data due to the limited attributes in existing methods, making the synthetic data highly sensitive
to variations, and (2) unsatisfactory classification accuracy when synthetic statistical attributes
are used to augment existing datasets. Moreover, their simplistic attribute focus and disregard for
transport and network layer protocol behaviors prevent their use with traditional networking tools
such as tcpreplay [43] or Wireshark [16].
Fortunately, the general increase in available computational power and the breakthroughs in

high-resolution image generation techniques, particularly diffusion models [101, 107, 120], offer
a promising avenue to overcome these challenges. Specifically, we harness the capabilities of
text-to-image diffusion models, which execute conditioned generation based on descriptive text
prompts. These models are adept at creating detailed, accurate visual representations from textual
descriptions. By translating the intricate characteristics of network traffic into an appropriate image
format, we can tap into the unique advantages offered by thesemodels. In contrast to GANs, diffusion
models are able to capture both broad patterns and detailed dependencies. This inherent generative
quality makes them an ideal choice for producing network traces with high statistical resemblance
to real traffic and full packet header values. By incorporating conditioning techniques, diffusion
models can generate structured data that conforms to specific network properties, which ensures
the desired sequential inter-packet characteristics and rough protocol dependencies. Moreover, the
gradient dynamics of the training process in diffusion models is much more stable than GANs. We
discuss the technical details and benefits of diffusion models in depth in Section 3. These attributes
collectively position diffusion models as a compelling choice for advancing the state-of-the-art for
synthetic network trace generation, addressing the extant limitations of current methodologies.
In this paper, we introduce NetDiffusion, an approach to synthetic raw network traffic genera-

tion for producing packet headers leveraging fine-tuned, controlled stable diffusion models. Our
contributions are as follows:
(1) Generation of synthetic network traces with high resemblance to real traffic: Us-

ing stable-diffusion techniques, we propose a two-fold strategy: (1) a conversion process
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for transforming raw packet captures to image representations (and vice versa), and (2)
fine-tuning a text-to-image diffusion model based on packet capture-converted images for
generating synthetic packet captures. To improve resemblance to real network traffic, we
employ controlled generation techniques to maintain fidelity to the protocol and header field
value distributions observed in real data and, post generation, use domain knowledge-based
heuristics to finely check and adjust the generated fields, ensuring their semantic correctness
in terms of compliance with transport and network layer protocol rules.

(2) Improved classification accuracy in ML scenarios with synthetic network traffic
augmentation:We conduct a case study evaluation on a curated traffic classification dataset.
By integrating NetDiffusion-generated network traffic into the real dataset at varying pro-
portions during training and testing, we observe a general increase in accuracy compared to
the state-of-the-art generation method [142]. This improvement is attributed to our synthetic
data’s significantly high statistical resemblance to the real dataset. Additionally, our method
shows promise in addressing class imbalance issues, enhancing the accuracy of ML models
in such cases.

(3) Extended applicability of synthetic network traffic for network analysis and testing
beyond ML tasks: NetDiffusion-generated network traffic can be converted into raw packet
captures suitable for traditional network analysis and testing tasks. We validate this com-
patibility through tests with tools such as Wireshark and Scapy [106], as well as tcpreplay
for retransmission. More importantly, we show that critical statistical features for various
network operations can be effectively extracted from the generated network traffic.

2 MOTIVATION
The use of publicly available network datasets has significantly aided advancements in applying

ML to networks, as well as network analysis and testing methodologies. For example, models
trained on network datasets have been helpful in tackling challenges like anomaly detection,
traffic classification, and network optimization, which in turn enhances network security and
performance [9, 21, 31, 61–63, 67, 81, 83, 92, 131]. Additionally, these datasets are valuable for
network analysts, aiding in understanding network behaviors, identifying performance issues,
and evaluating the performance of network security tools like firewalls and intrusion detection
systems [94, 102, 134].

2.1 Network Data Scarcity
Well-known network datasets such as CAIDA [7], MAWI [30], UNSW-NB15 [93], and KDD [6,

130] have been essential for numerous research projects in network science. However, the lack
of updated datasets often hinders further progress. Those with the means to capture large-scale
traffic, typically network operators and organizations with specialized hardware and network, are
often hesitant to share their data due to the risk of exposing sensitive or personally identifiable
information (PII). Even when entities are amenable to sharing, the task of providing consistent
updates and ensuring reliable labels for sanitized data is daunting. Labeling network data is
inherently challenging because of its dynamic nature, such the continuous evolution of network
behaviors and threats. Notably, the CAIDA, UNSW-NB15, KDD Cup 99 [6], and NSL-KDD [130]
datasets were last updated in 2020, 2015, 1999, and 2009 respectively, revealing notable gaps in
data recency which render them less reflective of evolving network dynamics. Even frequently
updated datasets like MAWI [30] are not exempt from issues, with instances of missing data from
hardware failures and substantial duplicate traces. While not an exhaustive list of datasets, the
issues highlighted are common across the board, accentuating the need for newer data to fuel
ongoing network research and analysis.
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2.2 Data Augmentation Using Synthetic Data

Data augmentation through synthetic data has proven effective in many fields. In computer
vision, for instance, synthetic images have improved model performance, especially when there’s
a shortage of labeled data [29, 82, 90, 118, 129]. The success of synthetic data augmentation is
largely attributed to generative methods which have showcased remarkable versatility in a variety
of domains: In medical imaging, GANs have been harnessed to augment datasets, significantly
enhancing the performance of diagnostic models [27, 48, 50]. In the domain of natural language
processing, Variational Autoencoders (VAEs) have been utilized to create synthetic text data, aiding
in tasks such as sentiment analysis and language translation [32, 132, 137]. In audio processing,
the advent of WaveGAN has facilitated the expansion of sound datasets, proving indispensable for
applications like speech recognition and sound event detection [13, 45, 46].
Translating these successes to the networking domain, certain endeavors have emerged, at-

tempting to augment network datasets through the generation of synthetic network data [78, 104,
139, 140, 142]. The overarching goal of these generative methods is to produce synthetic traffic
that exhibits high levels of statistical similarity to real-world network traffic. Distinguishing them
from simulation-based approaches, these generative techniques introduce subtle variations in the
synthetic data, diverging slightly from the real data. This aspect is crucial; it simulates potential,
unseen variations and the dynamic nature of real-world network environments. By doing so, while
the synthetic traffic largely mirrors the general patterns of the real data, it also aids in enhancing
the generalizability of various applications, such as anomaly detection systems and ML models. For
instance, in anomaly detection, these nuanced variations in synthetic traffic allow models to adapt
better to unpredictable or novel network behaviors, such as small variations in the IP addresses
or TCP flags, thereby improving their effectiveness and robustness in real-world scenarios. A
notable state-of-the-art attempt in this regard is NetShare [142] which utilizes GANs to produce
IPFIX [35]/NetFlow [34]-style statistics on network traffic. For simplicity, we refer to this general
type of aggregated statistucal attributes as NetFlow for the rest of the paper. Yet, its focus on
statistical properties might miss important network patterns essential for high ML accuracy. At
the same time, the limited number of attributes that it focuses prohibits the generation of compre-
hensive, raw network traffic such as packet captures, which are essential for additional non-ML
tasks such as network analysis and testing. In this paper, we do not consider other non-generative
methods [20, 24, 53, 75] like TRex [8] and NS-3 [53] because, while useful for specific tasks, they lack
the flexibility needed for broader dataset augmentation. They often rely on predefined templates or
rules, which may not capture the evolving nature of network traffic or the complex interactions
between various network protocols and applications.

2.3 Inadequate Performance from Existing Methods

We provide a short case study on NetShare, which is the current state-of-the-art network data
generation method that produces NetFlow attributes, i.e., derived statistics from raw network
traffic flows. Following the method in the original paper, we test the accuracy of a variety of ML
models–Random Forest (RF), Decision Tree (DT), and Support Vector Machine (SVM)–under three
scenarios: (1) training and testing on real NetFlow data, (2) training on NetShare synthetic data
and testing on real data, and (3) vice versa. In this paper, we focus on a traffic classification task
using a curated dataset, detailed in Section 4. The classification task is divided intomicro andmacro
levels. On the micro level, the goal is to classify network traffic flows into specific applications,
encompassing 10 distinct classes such as YouTube and Amazon. On the macro level, the aim is to
classify network traffic flows into broader service categories, spanning 3 classes, like streaming
and web browsing.
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2.3.1 Unsatisafactory ML Accuracy. (1) NetShare Limitations: The results from Table 1 showcases
a clear drop in accuracy when models are trained or tested on synthetic NetFlow data generated
by NetShare compared to when only real NetFlow data is used, irrespective of the classification
level. This points to a likely shortfall of NetShare in preserving critical distinguishing feature
values inherent in the real dataset, which adversely affects the models’ ability to accurately classify
network traffic. (2) NetFlow vs. Raw Traffic: Following the NetShare evaluation, we compared the
accuracy achieved with real NetFlow data to that when models train and test on raw network traffic
in pcap format. This comparison underscores the information loss encountered when using NetFlow
data and the potential classification performance gain from leveraging raw network traffic: The
highest accuracy is achieved with raw network traffic, with SVM arriving at near-perfect accuracy.
Conversely, a noticeable decrease in accuracy is observed with real NetFlow data, suggesting that
its limited feature set adversely affects classification accuracy.

Training/Testing Data Format
(Generation Method)

Highest Accuracy (Model)
Macro-level Micro-level

Real/Real Network traffic (pcap) (N/A) 1.00 (SVM) 0.978 (SVM)
NetFlow (N/A) 0.86 (RF) 0.648 (DT)

Synthetic/Real NetFlow (NetShare) 0.396 (RF) 0.140 (SVM)
Real/Synthetic NetFlow (NetShare) 0.503(SVM) 0.102 (RF)

Table 1. Comparison of model accuracy using real, synthetic Net-
Flow data, and raw network traffic. Results highlight a decrease in
accuracy with NetShare’s synthetic data and a boost when using
raw traffic. Only the top-performing model is displayed.

These observations lead to two
main insights: First, the need for syn-
thetic data generation methods to ef-
fectively preserve critical distinguish-
ing feature values to maintain clas-
sification accuracy; Second, the ad-
vantage of using raw network traffic
over NetFlow data due to its richer in-
formation content. The push towards
generating raw network traffic to re-
tain the fine-grained details and statistical properties of real network traffic, appears to be a crucial
step to overcome the limitations observed with NetShare generated data and NetFlow data.

2.3.2 Limited Applicability to Non-ML tasks. Besides the performance of synthetic network data
in ML tasks, another important metric to validate its usefulness is its applicability to traditional
network analysis and testing tasks, such as packet-wise analysis and replay. This is important
because, unlike other forms of data such as images where the quality of the data can be inferred
relatively easily by visual resemblance to real images, it is hard for network experts to manually
examine raw network traffic to verify its quality. NetFlow data, encapsulating aggregated or derived
statistics from raw network traffic flows, lacks the detailed information crucial for these tasks. For
instance, network analysts often use tools like Wireshark to investigate network traffic details like
packet headers and sequences to diagnose issues or assess performance, such as tracing latency
causes or detecting unauthorized access. However, the high-level statistical nature of NetFlow data
omits such fine-grained details, rendering it inadequate for such in-depth analysis. Furthermore,
synthetic NetFlow data cannot be retransmitted or replayed over network interfaces using tools
like tcpreplay. Retransmitting network traffic is pivotal for various network testing and validation
scenarios, such as evaluating the performance of network security tools under realistic traffic
conditions or stress-testing network infrastructure. The absence of packet-level details in NetFlow
data precludes its use for retransmission tasks. Moreover, certain network analysis tasks require
deriving additional attributes directly from raw network traffic. For example, estimating the window
size or investigating the distribution of packet sizes across a network necessitates access to raw
traffic data. These computations are crucial for understanding network behavior and optimizing
network configurations.

Converting high-level statistical NetFlow data back to raw network traffic, such as packet captures,
is inherently challenging due to the loss of detailed attributes like header values and flags, thereby
limiting the utility of synthetic NetFlow data for a myriad of non-ML network tasks. This challenge
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Fig. 1. Generation Framework Overview.

underscores the necessity of generating raw network traffic. At the same time, existing network
data generation methods often neglect to ensure that synthetic data adhere to critical transport
and network layer protocol rules found in real network traffic, which are crucial for traditional
network analysis and testing tools. For example, a protocol constraint is that packet length frames
must conform to specific sizes as per protocol standards. Generating synthetic data with incorrect
frame sizes could lead to misinterpretations in data analysis or malfunctions in network testing
scenarios. Other protocol constraints, like correct sequence numbers in TCP transmissions, valid
checksums, and appropriate flag settings, are also crucial as they affect how network devices and
analysis tools interpret and process the data. Hence, adhering to protocol rules is essential for the
accuracy and reliability of network analysis and testing tasks, and serves as a gauge for the quality
of synthetic network data generated.

3 METHOD
In this section, we introduce NetDiffusion, a framework that harnesses controlled text-to-image

diffusion models [107] to generate synthetic raw network traffic that complies with transport
and network layer protocol rules. We find this approach not only elevates classification accuracy
when utilized for data augmentation in ML scenarios but also facilitates a broad range of network
analysis and testing tasks (see Section 4), overcoming the limitations described in Section 2.3. We
first provide an overview of our method which has the 3 components shown in Figure 1, before
providing details of each component.
How do diffusion models work? Diffusion models synthesize data by modeling data generation
as the process of noise removal from noisy data (referred to as the reverse process) [55, 125]. The
noise removal is performed by a complex ML model, usually a neural network, that has been trained
to predict the noise that was sequentially added to real data (the forward process). Running the
forward and reverse processes in the latent space of a model has been found to generate better
quality data [107]. Mathematically, consider an initial noise vector (z) in the latent space. The goal
of diffusion models is to transform z into an data point (x) drawn from the desired distribution.
The idea is to define a differential equation that controls the transformation from z to x over a
series of discrete time steps. The rationale behind this is that by breaking down the generation
process into a series of incremental diffusion steps, the model can capture intricate dependencies
and details in the data manifold. An essential component of this approach is score-based generative
modeling, where the gradient of the data log-likelihood with respect to the data (often termed the
“score" function) is estimated. Modeling the score function is preferable because directly modeling
the probability distribution poses challenges, especially in obtaining the correct normalization
constant [124, 125]. Diffusion models have been adopted most effectively in the context of text-to-
image synthesis, where images matching a given text prompt are to be generated. The text prompt
serves as a conditioning variable to guide the reverse process towards generating an image that
semantically aligns with the text prompt. By iteratively applying the score function, conditioned
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on the text prompt, the model steers the data from a simple prior distribution (like Gaussian noise)
to the desired complex image distribution. In our case, the text prompts characterize the specific
classes/types of network traffic that we aim to generate.

We extend these principles on the operation of diffusion models to network traffic data via our
NetDiffusion framework. Our approach is structured around three primary components:
(1) Converting raw network traffic in packet capture (pcap) format into image-based representa-

tions (§3.1).
(2) Fine-tuning a Stable Diffusion model to enable controlled text-to-traffic generation with high

distributional similarity across header fields to real-world network traffic (§3.2).
(3) Domain knowledge-based post-processing heuristics for detailed modification of generated

network traffic to ensure high level of protocol rule compliance (§3.3).

3.1 Network Traffic to Image Conversion

In this subsection, we explain the motivation and the process of representing network traffic as
images, an important step in our method.

3.1.1 Advantages of Using Image Representation of Network Traffic. Network traffic data, with
intricate inter-packet dependencies and vast range of attributes, presents a complex landscape that
introduces specific challenges when it comes to accurate representation and efficient learning. Net-
work traffic data exhibits high dimensionality, particularly when using standardized representations
such as nPrint [58]. For instance, between the IP and TCP headers alone, there is an abundance of
fields (e.g., IP addresses, ports, sequence and acknowledgment numbers, flags, etc.). nPrint uses a
bit-level and standardized representation to have a consistent format for each packet by accounting
for all potential header fields (even if not present in the original packet). For instance, while a TCP
packet won’t have UDP header bits, the nPrint still includes placeholders for these bits. While this
ensures a uniform input structure for ML models, the attribute count per packet often exceeds a
thousand. This high dimensionality introduces computational bottlenecks for generative models.

Additionally, each network traffic trace, considered as a single network flow/session, inherently
contains sequential dependencies between packets. For example, in TCP, packets need to follow a
particular sequence to ensure the integrity and reliability of data transmission. The order of packets,
dictated by sequence and acknowledgment numbers, is crucial to reconstruct the transmitted data
accurately at the receiver’s end. These dependencies are also beneficial to improve ML classification
accuracy as they may be unique to different classes of network traffic. Traditional tabular formats
fall short in preserving these sequential relations due to their static nature, which could lead to the
misrepresentation of the underlying network behavior [40, 150, 151].

Since recent strides in synthetic data generation have centered around image generation [25, 37,
101, 107, 144], we seek to leverage these methods to generate high-fidelity synthetic network data
with low computational complexity. Our reasons for adapting these models are: (1)Maturity of Image
Generative Models: The advancements in the domain of image generative models, such as diffusion
models, offer a robust foundation to produce detailed synthetic network traffic. These models
have been optimized over years to understand and reproduce intricate patterns in high-resolution
images [37, 101, 107]. (2) Spatial Hierarchies and Connectivity: Images inherently capture spatial
hierarchies, which is crucial for representing intricate inter-packet and intra-packet dependencies
in network traffic. Pixels in images naturally form patterns and structures. Deep learning models,
especially convolutional neural networks (CNNs), are adept at exploiting these structures to capture
both local and global dependencies. Unlike traditional tabular formats where data points might
be perceived as independent entities, images inherently emphasize the significance of a packet
concerning its neighboring packets, preserving crucial contextual information [28, 73, 85, 116]. A
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straightforward example demonstrating the effectiveness of appropriate image representations
in capturing network dependencies is the use of edge detection in discerning packet protocol
distributions within a flow, detailed later in Section 3.2.3. (3) Visualization and Interpretability:
Image representations offer a intuitive way to discern packet flows, anomalies, and patterns in
network traffic. (4) Research and Tools Availability: The extensive research and tools available in
computer vision mean that scalability and optimization are already mature, providing a significant
advantage when handling high-dimensional data like network traffic [107, 148, 152].

3.1.2 Conversion Process. To arrive at image representations of network traffic, we first encode
packet captures (pcaps) using nPrint [58], which converts network traffic into standardized bits
where each bit corresponds to a packet header field bit as shown in Figure 1. This binary represen-
tation is simple yet effective, where the presence or absence of a bit in the packet header is denoted
as 1 or 0 respectively, and a missing header bit is represented as -1. This encoding scheme ensures a
standardized representation irrespective of the protocol in use. The payload content is not encoded
since it is often encrypted. However, the size of the packet payloads can be inferred from other
encoded header fields such as the IP Total Length fields.

Following this encoding, a sequence of packets in a pcap is converted into a matrix, which is then
interpeted as an image. The colors green, red, and gray represent a set bit (1), an unset bit (0), and a
vacant bit (-1), respectively. This color coding provides a visually intuitive representation of the
network traffic. We then group the packets in groups of 1024, representing the packet headers of the
first 1024 packets in a flow. Through this process, any network traffic in pcap format is transformed
into an image with dimensions of 1088 pixels in width and 1024 pixels in height, with each row
of pixels representing a packet in the network traffic flow as shown in Figure 2. Any image in
this format can be converted back to pcaps in a straightforward manner. This representation not
only preserves the complexity of the data but also retains the essential sequential relationships
among packets, laying a robust foundation for the ensuing steps in the NetDiffusion pipeline. We
opt for a grouping of 1024 packets, aligning with conventional practices in training and fine-tuning
text-to-image diffusion models, where image resolutions are commonly capped at 1024 by 1024
pixels. This choice is primarily driven by computational constraints encountered at higher data
resolutions. Nonetheless, this aspect presents an opportunity for future exploration, as we discuss
in Section 6, where the potential to handle larger packet groups could be considered.

3.2 Fine-Tuning Diffusion Model and Controlled Generation
Given a real, labeled network traffic dataset, we first transform the network traffic flows into

their corresponding image representations as previously described. Leveraging these image-based
representations, we then fine-tune a generative model, specifically a diffusion model, to produce
synthetic network traffic.

3.2.1 Advantages of Text-to-Image Diffusion Models for Network Traffic Generation. The decision
to employ diffusion models for image-based network traffic generation over other generative
approaches, such as GANs, is anchored on several compelling advantages:
(1) High-Fidelity Generation: Diffusion models excel in capturing and replicating intricate data

distributions with remarkable fidelity [56, 99, 112]. This attribute is pivotal, given the complex
and nuanced patterns inherent in real network traffic. The ability of diffusionmodels to closely
mimic these patterns ensures that the synthetic traces they produce have high resemblance
to real traces.

(2) High-Resolution Image Handling: Diffusion models, through techniques like latent diffusion,
are adept at generating and managing high-resolution images [95, 101, 107]. This capability
is pivotal for our framework, where the image representation of network traffic demands
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high resolution for accuracy and detail retention. While diffusion models can be tailed to
handle tabular data directly, this may forgo the distinct benefits of image representations,
such as capturing spatial and sequential intricacies, as previously discussed.

(3) Conditional Generation: By allowing for conditional generation based on textual prompts,
text-to-image diffusion models can be instructed to generate network traffic that mirrors
specific classes or types, offering an unparalleled fusion of precision and versatility. The
model learns the relationship between text and image during its training phase by adjusting
its reverse diffusion trajectory based on the given textual prompt [49, 110, 145]. This ensures
that the final generated image aligns with desired image distribution. This becomes invaluable
when the need arises to produce specific classes of network traffic or to conform to protocol
rules and other essential network characteristics.

(4) Transparency and Training Stability: The nature of diffusion models ensures a transparent
generation process, leading to reproducible results. Such transparency are critical for produc-
ing network traces that meet specific patterns or constraints, as it shows good interpretability.
Moreover, unlike the often unpredictable training dynamics of GANs due to their adversarial
nature [11, 36, 91], diffusion models exhibit stable training behavior and well-behaved gra-
dient dynamics [55, 123, 125]. This stability not only ensures consistent and anomaly-free
output but also streamlines the optimization process.

In totality, these advantagesmake diffusionmodels a robust and versatile choice for the generation
of synthetic network traces, effectively addressing the challenges and constraints observed with
other generative techniques. At the same time, a key goal of our study is to promote the generation
of highly granular network traffic, with our preference for diffusion models partly influenced
by their swift recent advancements. Nevertheless, investigating alternative methods suited for
generating long sequential time-series data, such as transformer-based architectures, could be a
promising approach. While this is not the focus of this paper, we discuss potential future directions
in Section 6.

3.2.2 Fine-Tuning a Stable Diffusion Base Model Using LoRa. Training generative models, es-
pecially those as sophisticated as diffusion models, from scratch can be resource-intensive and
time-consuming. This is particularly true when considering existing base models like Stable Diffu-
sion 1.5 [107] which have been pre-trained on the LAION-5B dataset [111] containing over 5.85B
CLIP-filtered image-text pairs. While the out-of-the-box Stable Diffusion model is undeniably
potent, we cannot directly use it to synthesize network traffic because it’s designed to cover a broad
spectrum of patterns and intricacies, causing it to lack the depth needed in specific generation
tasks. For instance, generating images based on task-specific prompts might yield results that,
although thematically aligned, lack the precision and high-fidelity one might expect. In our case, a
’Netflix Network Traffic’ prompt might yield a generic image like a highway scene within a Netflix
player. This is particularly evident when the textual description provided has multiple potential
visual interpretations, causing the model to produce images that may be blurry or off-target. By
fine-tuning Stable Diffusion on specific network datasets, we can address these limitations. Fine-
tuning augments the model’s expressiveness, enabling it to better associate with specific patterns
or embeddings of the network traffic domain.
As a result, in this framework, we build upon Stable Diffusion 1.5 and fine-tune this model on

our specific network datasets as shown in Figure 1, making it aptly suited for generating synthetic
network traffic that mirrors the complexities and nuances of real-world network traffic. To facilitate
this fine-tuning, we employ Low-Rank Adaptation (LoRa) [59], which is a training technique tailored
to swiftly fine-tune diffusion models, particularly in text-to-image diffusion models. Its crux lies
in enabling the diffusion model to learn new concepts or styles effectively, while maintaining a
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Fig. 2. Synthetic Amazon network traffic outputs: (1) Using ControlNet, we detect regions present in the
original traffic and ensure protocol and header field value distribution conformance by generating within
specified regions. (2) We apply post-generation heuristic to refine field details for protocol conformance.

manageable model file size. This is beneficial given the traditionally large sizes of models like Stable
Diffusion, which can be cumbersome for storage and deployment. With LoRa, the resultant models
are compact, striking a balance between file size and training capability. This compactness doesn’t
sacrifice the model’s ability but rather applies minute yet effective changes to the base/foundational
model, ensuring that the core knowledge remains intact while adapting to new data.

In our fine-tuning process, we start by sampling classes of real network traffic from our dataset
that we aim to generate synthetically. These traffic samples are then transformed into their image
representations. For each of these images, we craft an unique encoded text prompt (e.g., ‘pixelated
network data, type-0’ for Netflix traffic) that succinctly describes its class type. Consequently,
this results in a number of text prompt categories corresponding to the variety of network traffic
types within the dataset. For example, in the subsequent evaluation task (Section 4), we utilize a
dataset comprising flows from 10 distinct applications to fine-tune our NetDiffusion pipeline. This
results in 10 unique categories of text prompts, each corresponding to different flow applications,
e.g., ‘pixelated network data, type-5’ for Zoom flows and ‘pixelated network data, type-6’ for
Google Meet flows. The choice of our encoded prompt, though seemingly simplistic, achieves
two main objectives. It offers a specific vocabulary that reduces ambiguity and ensures the model
hones in on the network traffic’s nuances. Additionally, it minimizes interference from the base
model’s original word embeddings, optimizing the generative process. Experimentally, we found
that this specific prompt structure provides a balance between specificity and simplicity to prevent
overfitting and misinterpretations, leading to better results. Subsequently, these image-text pairs
are fed into the fine-tuning process, where the base Stable Diffusion model, augmented with LoRa,
learns to generate network traffic images conditioned on our prompts. By merging the power of
Stable Diffusion models with the adaptability of LoRa, we create a potent mechanism to generate
high-fidelity, synthetic network traffic images, tailored to our specific requirements.

3.2.3 Controlled Prompt-based Generation Via ControlNet. Upon fine-tuning the generation model,
the next phase involves generating the desired class of synthetic network traffic. This is achieved
by supplying the appropriate text prompts to the diffusion models to produce the image repre-
sentations of the traffic. Diffusion models operate by simulating a reverse process from a simple
noise distribution to the data distribution, which enables them to capture and replicate the intricate
patterns inherent in real-world data. The noise is progressively reduced over several steps, allowing
the model to gradually refine the generated image until it closely resembles genuine network traffic
patterns. We show an example synthetic network traffic in image representation for Amazon traffic
in Figure 2. This prompt-based generation process facilitates the creation of a synthetic nPrint-
encoded network traffic dataset tailored to specific class distribution requirements. For instance, to
curate a dataset with a certain class distribution and size, one would provide the corresponding
quantity of text prompts per class and activate the generation process accordingly.
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However, a challenge arises from the inherent flexibility of general diffusion models. While they
are designed to foster creativity in the generated output, it can lead to anomalies in the context
of network traffic generation. For example, generated traffic might incorrectly populate packet
header fields, leading to protocol distribution discrepancies between synthetic and real traffic. Such
deviations can compromise ML accuracy and make it arduous to ensure strict adherence to critical
protocol rules as we describe later. To ensure that the generated traffic closely aligns with the
prevalent protocol and header field value distributions observed in real traffic, certain constraints
are introduced during the generation process. If, for instance, the actual Amazon network traffic
primarily consists of TCP packets, the generation process should prioritize populating header fields
associated with TCP packets. This approach ensures that the generated traffic image predominantly
features green (set bit) or red (unset bit) pixels corresponding to TCP packet headers, while other
pixels remain gray (vacant bit). Moreover, consistent bit characteristics within headers, such as
consistently unset bits, should be mirrored in the synthetic output.
Leveraging the controllable nature of diffusion models, we incorporate ControlNet [146] into

the generation process. ControlNet is a commonly used neural network architecture designed to
add spatial conditioning controls to large, pre-trained text-to-image diffusion models. It capitalizes
on the robust encoding layers of these models, which are pre-trained with vast datasets, to learn a
diverse set of conditional controls. With "zero convolutions", the architecture gradually grows its
parameters from an initialized state, ensuring no adverse noise affects the fine-tuning. ControlNet
can work with a range of conditioning controls, from edges and depth to segmentation and human
poses. It offers flexibility in training, demonstrating robustness with both small and extensive
datasets. In our specific use case of ControlNet, we leverage M-LSD straight line detection for
detection the boundaries between fields that are suppose to be populated and those that are not, as
shown in Figure 2. Other edge detection methods such as Canny edge detection produce similar
results. Such line or edge detection methods are effective because they align with the inherent
columnar consistency present in packet traces.
Incorporating ControlNet allows the synthetic generation process to more closely emulate the

protocol and header field value distributions observed in real network traffic. This minimizes
deviations and ensures that the generated packets largely adhere to the expected protocol type and
header field values, enhancing the quality and reliability of the synthetic network traffic dataset.
And while ControlNet offers coarse-grained control, determining which image regions to populate,
the diffusion model provides fine-grained control, specifying individual pixel values which further
contributes to high resemblance to real traffic. In Appendix A, we carry out detailed ablation
studies showcasing the necessity of applying ControlNet during the generation process, as well
as the generation improvement from fine-tuning a base text-to-image diffusion model. Despite
the integration of ControlNet, the inherent variability and generative nature of diffusion models
can lead to differences in generated instances. For a detailed analysis of these differences, refer
to Appendix B. On the other hand, while our current approach utilizes pretrained ControlNet
models as an initial step for automating constraint enforcement, they fall short in supporting more
specific constraints, such enforcing and confining highly detailed constraints within smaller header
field columns. Future efforts will focus on training ControlNet models dedicated to network traffic
synthesis from scratch. This direction, as described later in Section 6, aims to achieve finer-grained
control over the synthetic traffic generation process.

3.3 Improving Transport and Network Layer Protocol Compliance
Utilizing the controlled diffusion model, we generate encoded network traffic that adeptly

resembles the protocol and header field value distributions inherent in real-world data. Our encoded
format not only captures every feature observed in real network traffic but also minimizes the
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statistical disparity between real and synthetic feature values, ensuring models can recognize and
act on underlying patterns. Yet, the domain of network dataset augmentation presents unique
challenges. While the synthetic data’s quality in ML applications is crucial, its utility extends
beyond. The data’s relevance in traditional network analysis and testing tasks – often requiring
raw network traffic – becomes equally significant. Despite the guidance provided by ControlNet
during the generation process, converting our synthetic encoded traffic back to raw formats, like
pcaps, isn’t straightforward. This complexity arises from the multitude of detailed transport and
network layer protocol rules at both inter and intra-packet levels. Properly formatted traffic must
strictly adhere to these rules. We now explore these complexities and their implications.

3.3.1 Inter and Intra Packet Transport and Network Layer Protocol Rules. At its core, both transport
and network layer protocol rules define the conventions and constraints that ensure seamless
communication between devices in a network. These rules are crucial as they dictate the structure,
formatting, and sequencing of packets, ensuring that data transmission occurs efficiently and
reliably. While transport layer rules emphasize end-to-end communication and reliability, network
layer protocols focus on packet routing and address assignment. Combined, these rules can be
broadly divided into two categories:
(1) Inter-Packet Rules: These rules dictate the relationships and sequencing between header fields

within multiple packets in a network flow. For instance, in a typical TCP connection, packets
need to be sequenced properly, starting with the handshake process involving SYN and
SYN-ACK flags. The integrity of data transfer is ensured by aligning sequence numbers and
acknowledgment numbers. Misalignment or incorrect sequencing can disrupt the connection
or data transfer process.

(2) Intra-Packet Rules: These pertain to the structure and contents within individual packets.
For example, many protocol headers have a checksum field computed based on the packet’s
contents to detect errors during transmission. It’s crucial that the checksum is consistent
with the packet’s payload. Additionally, certain fields within a packet, such as port numbers
in TCP and UDP headers, must adhere to specific formatting and value constraints to ensure
the packet’s validity and proper routing.

Ensuring compliance with these rules is vital. Properly formatted traffic is not only more efficient
but also crucial for network applications devices, such as analysis tools, routers, and firewalls, which
rely on well-structured packets to function correctly. The challenge with synthetic data generation,
especially when optimized for ML accuracy, is that ML models primarily focus on patterns within
features that contribute to classification or prediction accuracy. These models might overlook
intricate protocol rules in favor of patterns that enhance classification performance. For example, a
ML model might deem certain bit patterns as significant for classifying a particular type of traffic,
even if those patterns violate protocol rules. While our use of ControlNet aids in approximating the
general protocol and header field value distributions by ensuring correct field population, it does
not fully capture the nuances of specific bit-level values. This disparity between ML optimization
and protocol rule compliance accentuates the necessity for post-generation adjustments. Instead of
entirely overhauling the ML generation process, which would require embedding a vast amount of
rule-bound constraints derived from domain knowledge, post-generation adjustments offer a more
manageable approach to refine the generated data for protocol compliance. Implementing such
detailed control during generation remains a challenging endeavor, and we envision addressing
these complexities in future work.

3.3.2 Post-Processing Heuristic for Protocol Rule Compliance. To maximize the encoded synthetic
network traffic’s compliance with transport and network layer protocol rules, we first discern a
subset of critical header fields that mandate strict adherence to their formatting rules, e.g., sequence
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(a) Intra-packet.

(b) Inter-packet.
Fig. 3. Example TCP protocol rules/dependencies.

and acknowledgement numbers. In contrast, some fields can accommodate a degree of flexibility
without compromising the integrity of the network traffic, such as TCP window size or TTL. The
objective here is to limit the scope of fields requiring modification during post-processing, ensuring
we retain as much of the original generative model’s output as possible. By doing so, we minimize
potential impacts on ML-driven tasks, while still ensuring the synthetic traffic’s compatibility
with network analysis tools. With the critical fields identified, we develop a systematic way to
calculate their correct values based on other generated fields. This is achieved by constructing two
dependency trees—one for intra-packet header field dependencies and another for inter-packet
dependencies. These trees are built upon domain knowledge and are sourced from standard network
protocol documentation [1–5, 16]. Although constructing them requires significant manual effort
to extract critical protocol rules from these standards, this process is a one-time endeavor. Future
applications and iterations of our tool will benefit from this foundational work without the need
for repeated effort. We present example protocol rules and the associated dependency trees for
TCP protocol in Figure 3. More comprehensive and detailed dependency trees can be found in the
open-sourced repository2.

Given a generated encoded network traffic, we begin the correction process by traversing the trees
in an automated, bottom-up fashion. Initially, we satisfy intra-packet dependencies, ensuring that
individual packets are internally consistent. Subsequently, we address inter-packet dependencies,
guaranteeing that the packets in a flow relate correctly to one another. Certain fields necessitate
uniformity across packets within the same network traffic trace—like IP addresses and ports. Others
require specific initialization values, such as the IP identification number and TCP acknowledgment
number. To determine the most appropriate values for these fields, we employ a majority voting
system by selecting the most frequently appearing value within the generated traffic. Another
notable challenge is timestamp assignment for individual packets, given its intricate time-series
dependencies. Diffusion models, while adept at spatial dependencies, might struggle with long-
range temporal patterns inherent in time-series. As a result, our current generation process isn’t
fully optimized for this. As an interim solution, we sample original time distributions from real
traffic to produce similar timestamp distribution in the post-generated synthetic data. An example
post-processing algorithm for realizing the intra-packet dependency adjustments for IP headers
is in Algorithm 1. We recognize the potential for improvement and plan to address this in future
research. Post these steps, the synthetic traffic should be in a state where it closely adheres to the
essential protocol rules we’ve identified. This post-processing ensures that the encoded synthetic

2https://anonymous.4open.science/r/packet-capture-dependency-DB0C/README.md
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Algorithm 1 Post-Processing Heuristic Example: Intra-packet Dependency Adjustments for IP
headers
1: Input: Diffusion model generated synthetic traffic
2: Analyze and sort source IP address distribution (𝑃𝑠𝑟𝑐 ) from a radomly sampled real flow ⊲ Ensure that packet

directions in the synthetic flow closely align with those in real flows.
3: Identify the top two IPs (𝐼𝑃1, 𝐼𝑃2) with the highest occurrence from 𝑃𝑠𝑟𝑐 ⊲ Select the most frequent source IP addresses

as primary nodes for transition probability modeling.
4: Construct synthetic IP address sequence (𝐼𝑃𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ) using transition probabilities𝑇𝐼𝑃1→𝐼𝑃2 and𝑇𝐼𝑃2→𝐼𝑃1 ⊲ Use

transition probabilities to model the likelihood of switching between 𝐼𝑃1 and 𝐼𝑃2 in the synthetic sequence, reflecting
packet flow dynamics in real traffic.

5: Correct packet directions within synthetic flow using 𝐼𝑃𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒
6: if version_field ≠ ‘IPv4 (0100)’ then set to ‘IPv4 (0100)’ ⊲ Ensure Version field adheres to IPv4 standards for

compatibility.
7: for bit in IPv4 headers: if bit = -1 then set bit to random (0,1) ⊲ Replace undefined bits in IPv4 headers with random

binary values to maintain structural integrity.
8: Identify IPv4 protocol P in the synthetic flow by maximizing

∑
non-negative bits in P

total bits in P ⊲ Optimize protocol identification
by maximizing the ratio of valid to total bits in IPv4 protocol.

9: for bit in non-IPv4 headers: if 𝑏𝑖𝑡 ∉ P then set bit to -1 ⊲ Discard irrelevant bits in non-IPv4 headers to focus on IPv4
protocol consistency.

10: for bit in IPv4 options: if bit ≠ -1 then set bit to -1 ⊲ Render IPv4 options bits obsolete to reflect modern Internet
protocols.

11: if IPv4 TTL = 0 then set TTL using majority voting across all packets ⊲ Minimum IPv4 TTL guarantee to prevent
packet expiration.

12: Set HL field to number of active bits in the IPv4 fields ⊲ Adjust Header Length (HL) field to accurately represent the
active bits in IPv4 headers.

13: Output: Post-processed synthetic traffic with IP header intra-packet dependency compliance

traffic can be seamlessly converted into raw network traffic formats (like pcap) and subsequently
be utilized for a range of non-ML tasks.

4 EVALUATION
To assess the effectiveness of our generative framework, we applied it to an exemplary real

network traffic dataset, generating its synthetic counterpart as a case study. Our ML-oriented
evaluation comprises two main analyses: a statistical comparison to gauge the fidelity of the
synthetic data and a model accuracy assessment to determine its utility in enhancing ML outcomes.
In the non-ML scenarios, we explore the broader implications of our synthetic data by applying it
in diverse network analysis and testing scenarios. The choice of our baseline dataset, which we
detail next, serves as a demonstration of our method’s validity.

4.1 Dataset Overview and Synthetic Traffic Generation

Macro Services Total Flows Application Labels Collection Date
Video Streaming [22] 9465 Netflix 2018-06-01

YouTube
Amazon
Twitch

Video Conferencing [86] 6511 MS Teams 2020-05-05
Google Meet
Zoom

Social Media [62] 3610 Facebook 2022-02-08
Twitter
Instagram

Table 2. Summary of the real network traffic dataset:
10 applications across these three macro service types.

Our dataset for real network traffic, summa-
rized in Table 2, comprises pcap files that cap-
ture traffic from ten prominent applications in
areas such as video streaming, video conferenc-
ing, and social media. Although we focus our
study on a single dataset, it comprises varied
network data collected from multiple scenarios,
locations, and times from three different data
sources [22, 62, 86], underpinning our method-
ology’s applicability and generalizability. Dur-
ing preprocessing, we analyze DNS queries to identify relevant IP addresses for the specified
services and applications, keep only packets associated with these IPs, and split the traffic into
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Data Format Generation Method All Generated Features Ex. Common Feature: Protocol
Avg. JSD Avg. TVD Avg. HD Avg. JSD Avg. TVD Avg. HD

NetFlow Random Generation 0.67 0.80 0.76 0.82 0.99 0.95
NetShare 0.16 0.16 0.18 0.04 0.03 0.04

Network Traffic (pcap) Random Generation 0.82 0.99 0.95 0.83 1.00 1.00
NetDiffusion 0.04 0.04 0.05 0.02 0.03 0.02

Table 3. Average normalized statistical differences between real and synthetic network data across (1) all
generated fields and (2) example commonly generated field – IPv4 protocol: Jensen-Shannon Divergence
(JSD), Total Variation Distance (TVD), and Hellinger Distance (HD).

individual flows. We retain the application and service label for each processed flow, which is
later used for generating text prompts and assessing classification accuracy3. The comprehensive
dataset contains nearly 20,000 flows. For feasibility and consistency in our evaluations, we randomly
sampled 10% of this collection We also carried out evaluations on both larger and smaller subsets
of the dataset and obtained comparable results. We adapted the fined-tuned diffusion model to
this dataset, resulting in the generation of a synthetic dataset as outlined in the previous section.
The volume of this synthetic dataset adjusts based on specific evaluation requirements, as we will
detail further. The prompt-driven nature of diffusion model allows for the generation of synthetic
network traffic in any desired quantity, providing flexibility for diverse analytical needs.

4.2 Statistical and ML Performance Analysis

4.2.1 Statistical Similarity Results. A primary measure of synthetic data quality is its statistical
resemblance to the original data. This comparison is critical as the essence of synthetic data lies
in its ability to represent the statistical properties of the real data without mirroring it exactly.
Ensuring statistical similarity ensures that models trained on synthetic data generalize well to
real-world scenarios. In our evaluation, we benchmarked our synthetic data against two baselines:
the NetShare method, which produces synthetic NetFlow attributes and outperforms most of the
othe GANs-based methods [142], and a naive random generation approach. The latter, by generating
purely random values, acts as a worst-case scenario, illustrating the lower bounds of similarity and
underscoring the value added by more sophisticated methods. While our diffusion model inherently
captures a broader set of network attributes, for fairness in comparison, we examine similarity both
at an aggregated level, encompassing all features, and at a more focused level, targeting only the
common features between NetDiffusion and NetShare – using the Protocol attribute as an example.

We employ three distinct metrics to quantify statistical similarity: Jensen-Shannon Divergence
(JSD), Total Variation Distance (TVD), and Hellinger Distance (HD). JSD gauges informational
overlap between distributions, offering insights into shared patterns. TVD captures the maximum
difference between two distributions, highlighting worst-case discrepancies. Meanwhile, HD, rooted
in Euclidean distance, is especially sensitive to differences in the tails of distributions, shedding
light on distinctions in rare events or outliers. Collectively, these metrics provide a holistic view of
the statistical overlap between the real and synthetic datasets. Values for all three metrics range
between 0 and 1, with values closer to 0 indicating superior statistical similarity and thus a closer
resemblance to the original dataset.
The results in Table 3 offer a nuanced view into the challenges and successes of synthetic data

generation for network traffic. At a foundational level, raw network traffic in pcap format is inher-
ently more intricate than the NetFlow format. This complexity is evident in the stark contrast in
statistical distances when generating synthetic data for these two formats using random methods.
The higher statistical distance observed for the randomly generated raw network traffic underscores
the inherent challenges in replicating its multifaceted nature. Yet, it’s this very complexity that

3All traces used in this paper are sanitized and contain no personally identifiable information (PII).
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highlights the prowess of NetDiffusion. Despite pcap being a more challenging format, NetDif-
fusion—specialized in generating raw network traffic—demonstrates a remarkable capability. Its
statistical distances relative to real network traffic are notably lower than even NetShare’s distances
when NetShare is generating for the simpler NetFlow attributes. This finding underscores the
efficacy of NetDiffusion in producing high-fidelity synthetic data for intricate formats like pcap.
In summary, while the inherent challenges in replicating the complex pcap format are evident,

NetDiffusion’s capability to produce synthetic data with high statistical similarity, even surpassing
methods for simpler formats, validates its potential as a robust tool for data augmentation in the
realm of raw network traffic.

4.2.2 ML Classification Results. To gauge the efficacy of our synthetic network traffic in ML-
based data augmentation, we employ two classification tasks. The first task aims to categorize
network flows at a granular level, aligning them with their corresponding applications (micro-
level). The second task operates at a broader scale, classifying flows into their overarching services
(macro-level). We conduct evaluation using three prominent models, including random forest (RF),
decision tree (DT), and support vector machine (SVM). We adopt accuracy as the performance
metric for these ML-driven augmentation evaluations due to its intuitive interpretability, allowing
for a straightforward comparison between different augmentation techniques. Specifically, in
scenarios involving classification tasks where classes are (or are made to be) approximately balanced,
accuracy provides a clear picture of how well the model performs across all classes. Three distinct
augmentation scenarios, utilizing synthetic data, are evaluated:

• Complete Synthetic Data Usage: Here, either the training or testing set is entirely composed
of synthetic data, e.g., training exclusively on synthetic data and testing on real data, and
vice versa. This approach tests the robustness of synthetic data and its capacity to emulate
real-world data intricacies. Using synthetic data in isolation ensures that models are not
biased by any inherent patterns of the real dataset during training, allowing for an assessment
of the synthetic data’s standalone quality.

• Mixed Data Proportions: Synthetic data is interspersed with real data at varying proportions,
e.g., a 50-50 split between synthetic and real data during training. This strategy evaluates the
synergy between real and synthetic data. Mixing allows models to benefit from the diversity
of synthetic data while still grounding the learning process in real-world patterns, potentially
improving generalization.

• Class Imbalance Rectification: Synthetic data is employed specifically to address and rectify
class imbalances in the training set. For instance, underrepresented classes in the real dataset
are augmented using synthetic data until a balance is achieved. This targeted augmentation
ensures that the model is exposed to a balanced representation of all classes, mitigating biases
and improving performance on minority classes. Addressing class imbalance is crucial as it
prevents models from becoming skewed towards overrepresented classes, thereby enhancing
their predictive accuracy across all classes.

Result on Complete Synthetic Data Usage. The results presented in Table 4 reveal that our
method, which specializes in generating raw network traffic data in pcap format, consistently
outperforms the NetShare approach, which is tailored for the simpler NetFlow data format. Note
that the classification accuracy tends to be higher for the macro-level task in all train/test scenarios.
This is anticipated because the macro-level task categorizes broad traffic service types (like video
streaming vs. video conferencing), while the micro-level task involves finer distinctions between
specific applications (e.g., YouTube vs. Twitch). The increased specificity of the micro-level task
generally yields lower accuracy compared to the broader macro-level classification.
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Training/Testing Data Format
(Generation Method)

Post-Gen.
Heuristic

Highest Accuracy (Model)
Macro-level Micro-level

Real/Real Network traffic (N/A) N/A 1.00 (SVM) 0.978 (SVM)
Netflow (N/A) N/A 0.86 (RF) 0.648 (DT)

Synthetic/Real
Network traffic
(NetDiffusion)

Not Used 0.738 (DT) 0.262 (DT)
Used 0.676(DT) 0.222 (DT)

Netflow (NetShare) N/A 0.396 (RF) 0.140 (SVM)

Real/Synthetic
Network traffic
(NetDiffusion)

Not Used 0.542 (SVM) 0.249 (SVM)
Used 0.529 (SVM) 0.182 (SVM)

Netflow (NetShare) N/A 0.503(SVM) 0.102 (RF)

Table 4. Across all complete synthetic data usage scenarios, Net-
Diffusion augmented dataset yields to higher classification accu-
racy. Only the top-performing model is displayed.

Rank Real/Real Synthetic/Real
1 3_tcp_wsize_13: 0.0115 1_tcp_opt_92: 0.0125
2 3_tcp_wsize_15: 0.0107 2_udp_cksum_14: 0.0098
3 1_udp_len_5: 0.0100 8_tcp_opt_78: 0.0093
4 1_tcp_opt_24: 0.0099 4_tcp_opt_93: 0.0085
5 1_ipv4_tl_5: 0.0090 9_udp_cksum_14: 0.0085
6 0_tcp_opt_6: 0.0088 5_tcp_opt_93: 0.0084
7 0_ipv4_dfbit_0: 0.0088 5_tcp_urp_8: 0.0082
8 1_tcp_opt_6: 0.0086 9_tcp_cksum_1: 0.0081
9 9_ipv4_proto_3: 0.0085 6_tcp_opt_78: 0.0079
10 1_tcp_opt_23: 0.0076 2_tcp_opt_93: 0.0079

Table 5. Macro-level RF feature im-
portance for complete NetDiffusion
synthetic data usage; Green highlights
denote shared header fields with the
real/real scenario. Feature structure:
packet_protocol_header_bit.

The rich feature space inherent in raw network traffic offers a plethora of learnable patterns that
can bolster model accuracy. With a broader and more intricate feature set, there’s more room for
the model to identify and leverage intricate patterns, nuances, and correlations within the synthetic
network traffic data to enhance its predictive prowess. At the same time, the higher statistical
similarity between real and our synthetic datasets (as we observed previously) implies that the
synthetic network traffic data mirrors real-world patterns more closely. This, in turn, means that
features in the real dataset that are pivotal in distinguishing between network flows are likely to
retain their discriminative power in the synthetic dataset. Such preservation of feature significance
ensures that models trained on synthetic data can generalize more effectively to real-world scenarios.
Supporting this is our feature importance analysis for the RF model in the macro-level classification
task as shown in Table 5. When trained on NetDiffusion synthetic data and tested on real data, the
RF model exhibited a propensity to prioritize features (on the header level) that are also critical
when both training and testing are done on real data. This nuanced focus on specific feature subsets
is indicative of the model’s ability to discern and leverage patterns in the synthetic data that are
reflective of real-world traffic. While we use the RF model for subsequent detailed analysis due to
its relatively consistent performance and interpretability across scenarios, our later sections will
delve into a broader spectrum of model performances.
An additional layer to our analysis pertains to the post-generation heuristic for enhancing the

synthetic network traffic’s adherence to protocol rules while minimally altering the diffusion-
generated outputs. The heuristic affects only ∼8% of the synthetic traffic features which produces
marginal influence on ML performance, with accuracy reductions ranging from 0.013 to 0.067 across
all scenarios. This minor accuracy degradation aligns with expectations: Diffusion models are adept
at achieving high statistical similarity to real data during fitting and generation, enhancing ML
accuracy. However, the necessary post-generation heuristic adjustments for protocol compliance
inevitably alter the output. Although we strive to minimize this interference, it does slightly impact
accuracy, as it deviates from the model’s original generation output.
Result on Mixed Data Proportions. We introduce the "mixing rate" to denote the percentage of
real data replaced by synthetic data in the training set. This approach ensures the training set size
remains constant across diverse mixing rates, enabling a clear evaluation of the interplay between
the mixing rate and the resultant model accuracy. Introducing a controlled blend of synthetic data
into real datasets can often enhance model robustness by potentially introducing diverse patterns,
a practice that is considered standard in data augmentation.

Using the RF model as an example, Figure 4a shows that models trained with dataset augmented
with NetDiffusion-generated traffic consistently achieve higher classification accuracy than those
with NetShare-produced NetFlow attributes. When testing on real data, models trained entirely on
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(a) Classification accuracy comparison using the RF model with mixed data proportions. Datasets augmented
with NetDiffusion-generated traffic consistently outperform those using NetShare-produced NetFlow at-
tributes.
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(b) Comparative ML performance across different model choices using NetDiffusion-augmented datasets
versus NetShare-augmented NetFlow datasets. NetDiffusion consistently yields superior results.

Fig. 4. Evaluation result on mixed data proportions.

real network traffic demonstrate notably higher accuracy than those trained solely on real NetFlow
(also highlighted in Table 4). This starting accuracy discrepancy is critical. When integrating
synthetic network traffic data into training, any potential degradation in accuracy is offset by
the inherently higher baseline accuracy of real network traffic. In simpler terms, with a more
accurate starting point (real network traffic), there exists more "buffer" before accuracy noticeably
degrades. Another pivotal factor is the higher statistical similarity of NetDiffusion-generated traffic
to real data, compared to the similarity of NetShare’s NetFlow data to real NetFlow. With this
closer resemblance, as we incorporate more synthetic data into the training, the gradual decline in
accuracy is less pronounced than when using NetFlow data, especially in macro-level classification.
This advantage is not confined to testing on real data. Even when evaluating on synthetic data,
models trained with NetDiffusion’s output generally outperform those trained with NetShare.
Additionally, we carry out a similar analysis as in the case of complete synthetic data usage by
examing the effects of applying our post-generation heuristic on the model accuracy, as depicted in
Figure 4a. Consistent with the previous findings from Table 4, the example RF model experiences
little to no accuracy degredation as a result of the post-generation modification.

A notable observation is the sharp decline in accuracy when the data composition of the training
set diverges significantly from the test set. For instance, macro-level classification accuracy drops
when the mixing rate exceeds 0.8. This is expected since adequate samples from the test data
distribution are needed in the training set for effective cross-validation. As the mixing rate increases,
models might overfit to the synthetic data, hindering their performance on real data. This behavior
is evident in the changing feature importance with increasing mixing rates, as seen in Table 7. In
practical scenarios, it’s rare to rely heavily or solely on synthetic data for training. Our results
suggest that, barring extremes, NetDiffusion-generated traffic can be effectively used for training.
Lastly, we show that across different model choices, as shown in Figure 4b, NetDiffusion-

augmented datasets generally lead to better ML performance than NetShare-augmented NetFlow
datasets. Notably, the SVM classifier demonstrates markedly superior performance when tasked
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Mean (𝜇) Med Min Max Std Dev (𝜎) Range Var (𝜎2)
Before Balancing 10.00% 8.89% 4.44% 17.78% 5.13% 13.34% 26.37%
After Balancing 10.00% 10.00% 10.00% 10.00% 0.00% 0.00% 0.00%

Table 6. Synthetic balancing on under-represented classes to mitigate class imbalance.

Rank Mixing Rate (Accuracy)
0.0 (0.960) 0.4 (0.928) 1.0 (0.187)

1 5_ipv4_ttl_0: 0.0081 1_ipv4_ttl_3: 0.0053 5_ipv4_ttl_3: 0.0055
2 4_tcp_wsize_10: 0.0061 4_ipv4_ttl_3: 0.0049 8_tcp_cksum_14: 0.0054
3 5_tcp_wsize_4: 0.0061 1_ipv4_ttl_0: 0.0047 7_ipv4_ttl_4: 0.0052
4 1_ipv4_ttl_0: 0.0061 5_ipv4_ttl_3: 0.0046 4_ipv4_ttl_5: 0.0052
5 1_ipv4_dfbit_0: 0.0059 4_ipv4_ttl_0: 0.0045 3_ipv4_tl_12: 0.0047
6 4_ipv4_ttl_0: 0.0059 7_ipv4_tl_14: 0.0044 1_udp_cksum_4: 0.0044
7 4_ipv4_ttl_3: 0.0055 1_ipv4_dfbit_0: 0.0040 6_ipv4_tos_4: 0.0042
8 4_ipv4_ttl_1: 0.0054 4_tcp_wsize_10: 0.0039 2_ipv4_ttl_3: 0.0041
9 5_ipv4_ttl_1: 0.0053 5_ipv4_ttl_1: 0.0038 6_ipv4_ttl_3: 0.0040
10 1_tcp_opt_54: 0.0053 5_ipv4_ttl_0: 0.0036 8_tcp_wsize_13: 0.0040

Table 7. Feature importance at varying mixing rates
for micro-level classification on real network traffic
data. Red highlights indicate header fields that are not
in the top 10 most important features in the real/real
scenario (mixing rate = 0).

Training Data Model Test Accuracy
Δ Acc.

(Balancing Source) Pre/Post Balancing

Network Traffic
(NetDiffusion)

RF 0.982 → 0.986 0.004
Facebook (0.955 → 1.00)

DT 0.973 → 0.982
0.009

Meet (0.909 → 1.00)
Zoom (0.955 → 1.00)

SVM 0.991 → 0.991 0

Netflow Data
(NetShare)

RF 0.645 → 0.628 -0.017
DT 0.603 → 0.600 -0.003

SVM 0.290 → 0.290 0

Table 8. Comparison of micro-level classification ac-
curacy: Class balancing using NetDiffusion synthetic
data contributes to accuracy improvement on minor-
ity classes.

with classifying raw network traffic as opposed to NetFlow traffic. SVMs are intrinsically adept
at handling datasets with high dimensionality and complex relationships between features. The
reason lies in SVM’s ability to transform the original data into a higher-dimensional space and find
optimal hyperplanes to segregate different classes. The richer and more intricate the feature space,
the more advantageous this capability becomes. This observation accentuates the importance of
NetDiffusion in generating synthetic network traffic, which retains the intricacies of real traffic,
allowing sophisticated classifiers like SVM to effectively discern patterns and relationships.
Result on Class Imbalance Rectification. Class imbalance is an ubiquitous challenge in many
datasets used for training. For instance, in our collected network trace, the least represented
application class constituted a mere 4.44% of the total flow samples, while the dominant class
accounted for 17.78%, as shown in Table 6. Such imbalances can negatively skewmodel performance,
as models trained on imbalanced data may struggle to correctly classify underrepresented classes,
especiallywhen real-world test data exhibits amore balanced distribution. To combat this, a plausible
approach is to selectively augment the training set by appending synthetic data to minority classes,
ensuring an even class distribution. Simultaneously, by limiting the addition of synthetic data to well-
represented classes, we minimize the drawbacks associated with integrating synthetic data, such
as the risk of accuracy degradation from overly introduced variations and insufficient amount of
real data in the training set, as we observed in the case of mixed data proportions. Using synthetic
data offers advantages over traditional methods like SMOTE [26], random oversampling [15],
ADASYN [52], and boosting [47]. It produces diverse and novel examples, enriching the feature
space and bolstering model generalization to unseen real-world scenarios. While techniques like
SMOTE replicate close counterparts of real data, they might miss certain variations.

We apply synthetic balancing using NetDiffusion-generated network traffic by iteratively gener-
ating instances of the underrepresnted classes until all classes have equal representation, resulting
in a balanced network traffic dataset across all applications. Similarly, the NetFlow dataset is
balanced using synthetic attributes from NetShare. However, due to the limitation of GAN-based
methods in prompt-invoked generation, we address underrepresentation by independently training
a NetShare GAN for each specific class. Our evaluation reveals that models trained on the balanced
NetDiffusion dataset either match or outperform those trained on the original imbalanced dataset
as shown in Table 8. Notably, the accuracy gains were predominantly attributed to the improved

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 11. Publication date: March 2024.



11:20 Xi Jiang et al.

performance on the previously underrepresented classes. For instance, with the DT model, a no-
table 0.09 increase in overall classification accuracy is observed using the NetDiffusion augmented
dataset. A breakdown of this improvement pinpoints Meet and Zoom traffic, two underrepresented
classes with sample counts roughly half or less than the most populated class in the original real
dataset, as the primary beneficiaries. Their classification accuracies improved by 0.091 and 0.045,
respectively. In contrast, classifiers trained using the NetShare augmented NetFlow dataset do not
yield such gains and occasionally even faced accuracy degredations. This further underscores the
higher fidelity of NetDiffusion-generated traffic, which not only mirrors real data more closely but
also supports larger feature space to enhance model performance.

4.3 Extendability to Additional Network Anlysis and Testing Tasks
The efficacy of synthetic data augmentation extends beyond just ML performance, especially

within the networking realm. While ML-centric tasks may primarily focus on ensuring that gen-
erated, encoded network traffic produces a consistent feature set with high statistical similarity
to real traffic, conventional network analysis and testing tasks demand the conversion of this
generated data back into raw formats, such as packet captures. Moreover, these tasks require
adherence to specific protocol rules, as elaborated in Section 3.3. By harnessing the capabilities of
ControlNet and the post-generation heuristics we employ, NetDiffusion facilitates the generation
of network traffic that can be seamlessly converted into raw packet captures while maintaining
a robust adherence to protocol rules. To illustrate this, we use the synthetic Amazon network
traffic generated by NetDiffusion as an example and show that (1) the generated traffic can be
smoothly parsed and interpreted by Wireshark, a renowned network analysis tool, without encoun-
tering exceptions and (2) the synthetic traffic supports retransmission, as corroborated using the
established packet retransmission tool, tcpreplay. Beyond these observations, we demonstrate that
NetDiffusion-generated traffic can successfully support a broad spectrum of common network tasks,
ranging from intricate traffic analyses to network behavior studies. Crucially, the derived features
routinely employed in these tasks can be extracted from NetDiffusion’s outputs using Scapy [106].
This underscores the versatility of our approach, suggesting that NetDiffusion’s synthetic network
traffic can integrate into a multitude of network analysis and testing tasks beyond the confines of
ML-centric applications.
We abstain from juxtaposing NetDiffusion’s capabilities with NetShare in this section. The

rationale is simple: NetShare’s design fundamentally restricts it to generating a limited set of
statistical attributes, which inherently curtails its ability to be converted into raw packet captures,
a prerequisite for the tasks discussed here.
Wireshark Parsing Analysis. Table 9 details the results from Wireshark’s parsing of the NetDif-
fusion synthetic traffic, stored as capsinfo log [16]. Several observations can be drawn: (1) Data
Format and Integrity: The generated traffic is stored in the standard pcap format with Raw IP
encapsulation. This confirms the synthetic data’s adherence to widely accepted network trace data
formats, ensuring broad compatibility with networking tools. (2) Comprehensive Metrics: All the
essential metrics that Wireshark uses to describe and analyze traffic are present, ranging from
packet count and data size to encapsulation and timing details. These observations underscore our
design’s success in producing protocol rule-compliant synthetic traffic, ensuring compatibility with
analysis tools like Wireshark that demand structural and semantic correctness.
Tcpreplay’s Retransmission Analysis. Table 10 shines light on the retransmission capabilities of
the synthetic traffic via tcpreplay [43]. Notable results are: (1) Successful Retransmission: All 1,024
packets were successfully sent without any failures or truncations, indicating the traffic’s high
fidelity and adherence to transport layer protocol rules. (2) Correct Packet Handling: Metrics like
retried packets standing at zero and the exact match of unique flow packets to successful packets
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Attribute Value
File type Wireshark/tcpdump/... - pcap
File encapsulation Raw IP
File timestamp precision microseconds (6)
Packet size limit (file hdr) 65535 bytes
Number of packets 1,024
File/Data size 1,335 kB/1,318 kB
Capture duration 0.602296 seconds
First/last packet time (absolute) 00:00:00.000000/00:00:00.602296
Data byte/bit rate 2,189 kBps/17 Mbps
Average packet size/rate 1287.76 bytes/1,700 packets/s
Strict time order True
Number of interfaces in file 1

Interface #0 info

Encapsulation = Raw IP (129 - rawip4)
Capture length = 65535
Time precision = microseconds (6)
Time ticks per second = 1000000
Number of stat entries = 0
Number of packets = 1024

Table 9. Wireshark capinfos validation log on parsing
NetDiffusion generated Amazon network traffic.

Metric Value (NetDiffusion) Value (Real)
Total Packets Sent 1024 1024
Total Bytes Sent 1318664 bytes 164189 bytes
Duration 0.613297 seconds 0.694616 seconds
Rate (Bps) 2150123.0 Bps 236454.7 Bps
Rate (Mbps) 17.20 Mbps 1.89 Mbps
Packets per Second (pps) 1669.66 pps 1474.70 pps
Total Flows 2 2
Flows per Second (fps) 183.06 fps 2.88 fps
Unique Flow Packets 1024 1024
Successful Packets 1024 1024
Failed Packets 0 0
Truncated Packets 0 0
Retried Packets (ENOBUFS) 0 0
Retried Packets (EAGAIN) 0 0

Table 10. Tcpreplay results on retransmitting (1) Net-
Diffusion generated and (2) real Amazon network traf-
fic.

further reiterate the synthetic traffic’s quality. (3) Metrics Completeness: Key metrics like data bit
rate and packet rate, essential for evaluating traffic characteristics, are present and well-defined
in both synthetic and real traffic. However, there are noticeable discrepancies in metric values,
such as total bytes sent and rates, between synthetic and real traffic. This variance is anticipated,
given that NetDiffusion generates traffic flows at a bit level. Consequently, even minor deviations,
such as a single-bit difference within an 8-bit header field, can lead to significantly altered field
values. Addressing this issue could involve more precise controls during generation, as we discuss
in Section 6, or implementing value rescaling in post-generation heuristic, which we leave to future
work.
Feature Extraction for Core Network Analysis Tasks. One of the distinguishing attributes
of NetDiffusion generated traffic, compared to earlier works like NetShare, is the ability to derive
detailed metrics from the synthetic traffic using tools such as Scapy, making it exceptionally valuable
for an expansive range of network analysis tasks. To demonstrate this, we evaluate the applicability
of our synthetic traffic on representative tasks including traffic and protocol analysis [14, 19, 41,
69, 127, 147], network performance assessment [19, 41], device identification [70, 89], routing
and user behavior characterization [12, 18, 51, 108, 133], and error evaluation [60, 113, 126]. As
shown in Table 11, using Amazon traffic as an illustrative example, our synthetic network traffic
effectively delivers both fundamental metrics, such as packet and byte counts, as well as more
nuanced measures like the average TTL used for routing behavior analysis. Furthermore, metrics
linked to network performance, device identification, routing behavior, and error analysis further
accentuate our synthetic traffic’s authenticity and granularity. A noteworthy point is the zero count
for error metrics like checksum errors and fragmented packets in both real and synthetic datasets,
underscoring our synthetic traffic’s semantic correctness. While there are variances between some
of the metric values from our synthetic data and real traffic, especially in areas like TCP flag
distribution, these differences are inherent to our generative approach. Instead of merely replicating
real data values, our method generatively produces them, introducing variations to enhance data
diversity. The delicate balance between maintaining the realism of these variations and the utility
of the resultant metrics for downstream tasks necessitates a nuanced, task-specific assessment. In
future iterations, we aim to focus on enhancing the congruence between synthetic and real data
metrics, such as addressing the overrepresentation of non-ACK packets in the synthetic data – a
reflection of the complexities tied to emulating the TCP state machine.
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Network Task Metric Unit Value (Real Network Traffic) Value (NetDiffusion Generated Traffic)

Traffic Analysis
Packet Count packets 1024 1024
Byte Count bytes 1100406 1318664

Avg. TCP Window Size bytes 32739.95 13234.63

Protocol Analysis

Protocol Distribution packets TCP: 1024, UDP: 0, ICMP: 0 TCP: 1024, UDP: 0, ICMP: 0

Flags Distribution flags SYN: 0, ACK: 1023, FIN: 0, SYN: 68, ACK: 574, FIN: 556,
RST: 0, PSH: 0, URG: 16 RST: 1, PSH: 6, URG: 495

Src Port Distribution port (packets) 46508 (303), 443 (721) 30202 (376), 14443 (648)
Dest Port Distribution port (packets) 443 (303), 46508 (721) 14443 (376), 30202 (648)

Network Performance Packet Size Distribution packets 0-499: 306, 500-999: 6, 1000-1499: 6 0-499: 35, 500-999: 56, 1000-1499: 257
1500-1999: 706, 2000+: 0 1500-1999: 676, 2000+: 0

Device Identification Src IP Distribution packets 192.168.43.37 (303), 54.182.199.148 (721) 156.76.135.124 (376), 132.81.26.166 (648)
Dest IP Distribution packets 54.182.199.148 (303), 192.168.43.37 (721) 132.81.26.166 (376), 156.76.135.124 (648)

Routing Behavior Average TTL seconds 186.51 123.33
User Behavior Number of Sessions sessions 1 1

Error Analysis
Checksum Errors packets 0 0

Fragmented Packets packets 0 0
Fragmented IP Datagrams datagrams 0 0

Table 11. Comparison of Real and Generated Amazon Network Traffic.

In sum, our NetDiffusion generated traffic stands out by allowing the extraction of vital metrics
for additional network tasks, a capability previous works lacked due to their inability to produce
protocol rule compliant, fine-grained network traffic.

5 RELATEDWORK
Diffusion Models. Since the inception of the first diffusion-based model [37, 120], such models
have consistently showcased great generative capacities across various domains in image synthe-
sis [101, 107], video creation [54, 57], and structured data generation [71, 72, 152]. For instance,
Stable Diffusion [107] harnesses pre-trained autoencoders for its training, expertly blending detail
and simplicity for enhanced visual accuracy. DALL-E 2 [101] employs a dual-stage process that
crafts realistic images from text-derived embeddings. These models often surpass GANs in detail
and diversity [64, 66]. While efforts have been made to generate structured data such as tabular
datasets [72], producing network traffic presents its distinct challenges due to the strict protocol
constraints involved.
Network Traffic Generation. Traffic generation has been explored through various techniques
ranging from simulations to GAN-driven machine learning. Traditional simulation tools like
NS-3 [53], yans [75], and the modern DYNAMO [24] emulate network traffic based on different net-
work topologies. Conversely, structure-based solutions [20, 122, 135] capture the network patterns
through heuristics, and they scale better. A recent trend is GAN-based techniques, exemplified by
DoppelGANger[78] and NetShare [142], which excel in encapsulating intricate temporal patterns.
However, while traditional methods demand vast domain expertise and might lack versatility,
GANs, though adaptive, may fall short in protocol adherence [142]. Thus these frameworks are
not applicable to fine-grained traffic analysis tasks like traffic classification [62, 80], traffic man-
agement [38, 79], etc. On the other hand, there are some preliminary attempts at using diffusion
models [119] for traffic generation, but their generation scope is limited as they aim to just match
the overall statistics of the real data, and do not attempt to create realistic packet-level data as in
this paper.
Diffusion Process Controls. Contemporary studies [148] aim to harmonize diversity and con-
trollability in data generation by imposing conditions. ControlNet [146], for instance, integrates
task-centric conditions into Stable Diffusion, utilizing inputs like edge maps. DreamBooth [109]
employs unique identifiers in text-to-image frameworks, ensuring personalized and diverse outputs.
Visual ChatGPT [138] and DragDiffusion [98, 117], present an interactive image modification
system through language or dragging. Dall-E 3 [97] makes a leap forward in to generate images
that exactly adhere to the semantic meanings of text.
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6 CONCLUSION AND FUTUREWORK
Synthetic traces, primarily emphasizing certain flow statistics or packet attributes, are frequently

used to support ML tasks in networking. However, their limited alignment with real traces and
challenges in converting to raw network traffic hinder both their ML performance and broader ap-
plicability in conventional network analyses. In our research, we tap into the promising capabilities
of diffusion models, known for their high-quality data generation, to enhance synthetic network
traffic production. We present NetDiffusion, a tool to produce synthetic network traffic, captured
as pcaps covering all packet headers. Our evaluation reveals that NetDiffusion’s pcaps closely
resemble authentic data and bolster ML model performance, outperforming current methods. These
synthetic traces integrate with traditional network tools, support retransmission, and suit a broad
range of network tasks. The rich features in NetDiffusion’s outputs position it as a vital tool for
diverse network analysis and testing tasks.
Looking ahead, several avenues beckon further exploration. First, transformers have shown

efficacy in generating sequential data like text, suggesting their potential in network traffic gen-
eration. Key challenges include appropriate packet capture tokenization and maintaining long
contexts for generating meaningful flows. NetDiffusion can also attempt to address the issue of long
contexts by simply increasing image resolution in future work. Second, our current protocol rule-
compliance approach is post-generative, given the intricate nature of managing inter-dependent
constraints during the diffusion generation process. A future aspiration is to embed these rules
directly within the generation pipeline, eliminating the need for subsequent adjustments. At the
same time, although we leverage pretrained ControlNet models for controlled generation in this
implementation of NetDiffusion, it is viable to train dedicated ControlNet models from scratch
to realized finer-grained control beyond general protocol distribution, which can also serve as
a potential solution for avoiding excessive post-generation adjustments. A feasible strategy for
achieving this involves curating ControlNet training datasets focused on specific attributes, such as
exclusively featuring TCP options. This targeted training may help effectively enforce constraints
on particular aspects of the flows. Additionally, as time dependencies play a pivotal role, we aim to
refine the diffusion models to directly learn and generate time series, providing a more nuanced
approach to inter-packet time dependencies. Our generation’s horizon is presently capped at 1,024
packets per flow sample, a limitation we seek to address, possibly through techniques like tabu-
lar diffusion that retains packet dependencies or sequential flow generation. Another intriguing
prospect is building a network-specific diffusion foundation model, which could further heighten
generation accuracy. Lastly, generating semantically meaningful payloads remains a challenge,
with potential solutions like autoencoders offering a promising direction for future work.
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Fig. 5. Comparison of (a) real traffic with outputs from (b) non-fine-tuned SD 1.5, (c) fine-tuned NetDiffusion
w/o ControlNet, and (d) fine-tuned NetDiffusion w/ ControlNet.

A ABLATION STUDY - FINE-TUNING AND CONTROLNET
We evaluate the design choices of NetDiffusion, focusing on its fine-tuning and controlled

generation aspects. Our experiments involve three configurations: (1) the non-fine-tuned Stable
Diffusion 1.5 model, (2) the fine-tuned NetDiffusion model without ControlNet, and (3) the fine-
tuned NetDiffusion model with ControlNet (excluding post-generation correction heuristic). All
models are given the same prompt ‘pixelated network traffic, type-0’, representing Amazon traffic, to
compare their generation outcomes. The Stable Diffusion 1.5 model used in Figure 5 is employed in
its original, off-the-shelf form, without any fine-tuning. The text prompt was directly inputted into
the model as is. This non-fine-tuned model fails to meet our specific generation goals, producing
outputs unrelated to pcap-based network traffic when prompted, thus demonstrating the necessity
of fine-tuning. The fine-tuned NetDiffusion model shows significant improvement, generating
results that more closely resemble real traffic. However, due to the intrinsic characteristics of
diffusion models, as discussed in Section 3.2.3, its output lacks structural fidelity, specifically
in mimicing the protocol and header value distributions. In contrast, incorporating controlled
generation via ControlNet in NetDiffusion achieves image representations that more accurately
reflects real traffic. These findings underscore the critical role of both fine-tuning and controlled
generation in our framework.

B GENERATION VARIATION ASSESSMENT
We assess NetDiffusion’s generation consistency by generating multiple synthetic flow instances

using identical prompts (‘pixelated network traffic, type-0’, representing Amazon traffic) and
ControlNet inputs and compare the generated instances. For every pair of generated flows, we
compared each bit in the packet headers. If a bit differs between the two packets at the same
position, it is counted as a variation. For each header bit position 𝑏, the difference percentage was
calculated using the formula:

Diff% (𝑏) =
(
Number of differing bits at position 𝑏

Total number of packets

)
× 100

The average difference percentage for each aggregated bit position 𝐵 was then calculated by
averaging across all pcap flow pairs:

AvgDiff% (𝐵) = Average of Diff% (𝐵) across all pcap flow pairs

Our result reveals that the resultant synthetic traffic, exemplified by Amazon flow, exhibits an
average variation of approximately 12.66%. Table 12 show cases the top 20 header fields with the
highest average percentage of difference across instances of NetDiffusion generated Amazon traffic.
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Header Field Difference
ipv4_src 50.34%
ipv4_id 50.27%
ipv4_dst 50.20%
tcp_ackn 50.14%
ipv4_cksum 49.95%
tcp_seq 49.79%
tcp_sprt 49.28%
tcp_dprt 49.21%
ipv4_ttl 34.90%
tcp_cksum 32.36%
tcp_cwr 26.49%
tcp_wsize 22.44%
tcp_fin 21.94%
tcp_ns 21.46%
tcp_opt 20.16%
ipv4_tl 18.62%
tcp_rst 15.56%
tcp_res 14.98%
tcp_doff 14.69%
tcp_psh 13.99%

Table 12. Ranking of top 20 header fields by average percentage of difference across NetDiffusion generated
Amazon traffic.
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