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ARTICLE INFO ABSTRACT

Keywords: The development of Network Intrusion Detection Systems (NIDS) requires labeled network traffic, especially
NetFlow to train and evaluate machine learning approaches. Besides the recording of traffic, the generation of traffic
Synthetic data via generative models is a promising approach to obtain vast amounts of labeled data. There exist various
g;{;erator machine learning approaches for data generation, but the assessment of the data quality is complex and not
GAN standardized. The lack of common quality criteria complicates the comparison of synthetic data generation
Benchmark approaches and synthetic data.

Evaluation Our work addresses this gap in multiple steps. Firstly, we review and categorize existing approaches for

evaluating synthetic data in the network traffic domain and other data domains as well. Secondly, based on our
review, we compile a setup of metrics that are suitable for the NetFlow domain, which we aggregate into two
metrics Data Dissimilarity Score and Domain Dissimilarity Score. Thirdly, we evaluate the proposed metrics on
real world data sets, to demonstrate their ability to distinguish between samples from different data sets. As a
final step, we conduct a case study to demonstrate the application of the metrics for the evaluation of synthetic
data. We calculate the metrics on samples from real NetFlow data sets to define an upper and lower bound
for inter- and intra-data set similarity scores. Afterward, we generate synthetic data via Generative Adversarial
Network (GAN) and Generative Pre-trained Transformer 2 (GPT-2) and apply the metrics to these synthetic
data and incorporate these lower bound baseline results to obtain an objective benchmark. The application
of the benchmarking process is demonstrated on three NetFlow benchmark data sets, NF-CSE-CIC-IDS2018,
NF-ToN-IoT and NF-UNSW-NB15. Our demonstration indicates that this benchmark framework captures the
differences in similarity between real world data and synthetic data of varying quality well, and can therefore
be used to assess the quality of generated synthetic data.

1. Introduction difficult to compare generation approaches (Goncalves et al., 2020).
This lack of evaluation guidelines for synthetic data has also been
noted by Borji (2021), Dankar et al. (2022) and Koochali et al. (2022).
In essence, one wants to determine whether the generated data are
similar to real world data and embody the properties of real world data.
This is particularly important when comparing various approaches
for synthetic data generation based on the data outputs. The missing
guidelines and differences in the evaluation methodologies within the
literature make objective evaluations of data and comparisons between

Problem. The NetFlow format (Claise, 2004) is widely used in the
cybersecurity domain in the field of NIDS (Ring et al., 2019). In order to
build, test, and evaluate these systems, labeled benchmark data sets are
required. Due to privacy concerns and the complexity of labeling real
world data, such data are available only to a limited extent (Ring et al.,
2018). Moreover, to apply self-learning systems, training data tailored
to the monitored network architecture are required. The lack of labeled
data can be reduced by applying synthetic data generators that can be

used to enrich real world data, or create data with similar properties,
without the disclosure of sensitive network information. There are sev-
eral existing approaches to generate synthetic NetFlow data (Ring et al.,
2018; Manocchio et al., 2021; Yin et al., 2022), but there is no consen-
sus in objectively evaluating the synthetic data generated, making it
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generator approaches challenging.

Objective. This work takes a step further to close this gap by propos-
ing a multi-metric evaluation framework for synthetic NetFlow data.
Firstly, an overview of synthetic data evaluation metrics has to be
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Fig. 1. A structured and step-wise overview of the paper’s approach.

compiled. Second, metrics have to be selected that are suitable for
the NetFlow domain to create a standardized benchmark. Thirdly, the
suitability has to be tested on real NetFlow data to evaluate how
well they determine similarity and dissimilarity of NetFlow data. Fi-
nally, the metrics need to be applied to synthetic data to validate the
practicability of the framework.

Approach. The approach of this work is structured in different steps,
which are depicted in Fig. 1 and feature three main contributions.
Firstly, our literature review on synthetic data evaluation and the
evaluation of generative models reveals a lack of standardization in
assessing synthetic data.

Secondly, based on this review, we compile a structured collection
of metrics to create our benchmark framework. Our metric selection
for the benchmark incorporates data-driven measures regarding, for
example, data distribution, correlations and population characteristics,
and domain-driven metrics regarding, for example, syntax checks and
the application for NIDS.

Thirdly, our validation on real data samples shows that the selected
metrics effectively distinguish samples from different data sets, while
samples from the same set yield high similarity scores. We create
baseline similarity scores for specific data sets that are helpful for
synthetic data evaluation.

Finally, we generate synthetic data based on established generative
models, namely GAN (Goodfellow et al., 2014; Gulrajani et al., 2017)
and Generative Pre-trained Transformer 2 (GPT-2) (Radford et al.,
2019). The models are trained on NetFlow benchmark data sets, which
are designed for the creation and testing of NIDS. We generate data
samples during the training process of the generative model, which al-
lows the evaluation of the overall training process in terms of synthetic
data quality. Finally, the similarity metrics are applied to synthetic data
to assess the data quality objectively.

Overall, the benchmark presented in this work provides an objec-
tive, standardized, and model-agnostic assessment process for evalu-
ating and comparing synthetic data generators. In summary, we con-
tribute a benchmark for synthetic NetFlow data with meaningful base-
line references. This allows the evaluation of the training process of
generative models by utilizing data similarity to real data to objectively
compare different generative models.

Contributions. The contributions of this work can be summarized as
follows:

1. We conducted a comprehensive literature review on synthetic
NetFlow quality assessment and discuss the suitability of estab-
lished metrics on NetFlow data.

2. Using the reviewed metrics, we construct a benchmarking sys-
tem.

3. We demonstrate that the selected metrics effectively distinguish
samples from different real NetFlow data sets.

4. We conduct a case study of our framework, with synthetic data
from two generative models to demonstrate the application of
the framework on synthetically generated NetFlow data.

5. We publish our code as well as our benchmark data so that it can
be used by other researchers to evaluate their generated data.

Structure. The remainder of the paper is structured as follows. We
review current benchmark approaches for synthetic data from diverse
data domains and explicitly from the NetFlow domain in Section 2.
Then, we define the fundamentals for our benchmark in Section 3. Next,
we collect general approaches to measure quality and data similarity
from literature and discuss them in the context of NetFlow data in Sec-
tion 4. Afterward, we define the benchmark setup for the evaluation of
the synthetic data in Section 5. Finally, we test our selected metrics on
public NetFlow benchmark data sets in Section 6 and demonstrate our
benchmark setup for synthetic data, which are created by generative
models in Section 7. Our conclusions and future research directions are
given in Section 8.

2. Related work

The generation and evaluation of synthetic data are ongoing areas
of research. Generally, synthetic data should accurately capture the
properties and distribution of the original data, while avoiding the
creation of exact duplicates of the training data and still being realistic
overall. This section discusses previous work which targets the evalua-
tion of multiple synthetic data sets or generator models. This section
discusses multiple aspects of synthetic data evaluation. At first, we
briefly discuss model-specific evaluation settings for GANs. Afterward,
related works, which comprehensively evaluate synthetic data in other
domains, e.g. medicine and finance, are reviewed. Finally, we analyze
approaches of the NetFlow domain, where synthetic data are evaluated
based on different evaluation metrics.

2.1. Evaluation of models (GANs)

Borji (2021) presents an updated overview of various approaches
for the evaluation of GAN-based data generators. As image generation
constitutes a significant segment within synthetic data generation, the
majority of methodologies focus on assessing image data based on
fidelity and diversity. The author concludes that, for example, the
Inception Score (IS) (Salimans et al., 2016), Fréchet Inception Distance
(FID) (Heusel et al., 2017), Precision and Recall (P&R) (Sajjadi et al.,
2018), and Perceptual Path Length (PPL) (Karras et al., 2018) are
popular metrics, but objective and comprehensive evaluation needs
further research in the future. IS and FID require a pre-trained classifier
(InceptionNet) trained on ImageNet, which is available in the image
domain, but not in the domain of NetFlows. The metrics of Precision
and Recall are leveraged to evaluate the GAN’s generator. These metrics
use the pre-trained InceptionNet to obtain classification results. The
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similarity of generated data and real data is evaluated via precision,
while the coverage of the data distribution is measured by recall to
detect mode collapse, for example. PPL evaluates the entanglement
of the generator’s latent space, where a less curved latent space shall
generate perceptually smoother transitions, in contrast to a highly
curved one. This measure is strongly related to the models’ architecture
(GANs) and cannot be applied to synthetic data from other models
in general. This work highlights the necessity for a comprehensive
evaluation model, yet its approach, being specific to GANs and focused
on the image domain, falls short of the required universality and
transferability to other models and domains. Our benchmark focuses
on creating an evaluation method that goes beyond the image domain,
offering a versatile, model-agnostic approach suitable for the unique
aspects of NetFlow data.

2.2. Synthetic data evaluation benchmarks in other domains

Choi et al. (2017) generates synthetic patient records in the medical
domain. They apply an adapted GAN model called medGAN to generate
data with high-dimensional discrete variables. The synthetic data are
evaluated through a qualitative evaluation by a medical doctor and
a privacy risk evaluation based on presence and attribute disclosure.
Patient data are subject to data protection, which requires that data
generators, trained on real data, need to be checked for data disclosure.
The authors examine two variants of disclosure, presence disclosure,
and attribute disclosure based on the calculation of hamming distances
between patient data records. They compare their medGAN to different
GAN variants and other generative models like Variational Autoen-
coders and demonstrate that the medGAN is able to generate high
quality data, while showing a limited risk of privacy data disclosure. In
contrast to their setup, our benchmark does not include the subjective
evaluation via human experts. The application of the Hamming distance
is defined for numerical values only and cannot be directly applied to
NetFlows, which include numerical and categorical attributes.

Goncalves et al. (2020) focus the generation of synthetic medical
data targeting cancer classification. They compare different models for
synthetic data generation, which are probabilistic models,
classification-based imputation models, and GANs. They compare the
generated data based on different metrics like Cluster-Analysis, Support
Coverage, Pearson Correlation, Privacy Disclosure, Train on Synthetic,
Test on Real (TSTR) and Train on Real Test on Synthetic (TRTS)
classification results. They conclude that none of the tested generation
approaches outperforms the others in all metrics. In our benchmark we
incorporate some of their evaluation metrics like Pearson Correlation,
TSTR and TRTS, the selection process will be discussed in greater detail
in the next sections.

Ehrhart et al. (2022) apply conditional GANs for the generation
of physiological sensor data for stress detection. They focus on the
generation of time series sensor data which are evaluated via visual in-
spection of the time series data as individual data points and sequences,
as well as expert evaluation based on five experts from the field of
human sensing from various domains of physiology. Additionally, they
apply a TSTR (called TGTR in their work) and a Classifier Two-Sample
Test. They compare different GAN-Architectures and conclude that
the unstable training behavior of GANs hinder a search of optimal
hyperparameters. The mode collapse, of the GAN model complicates
the synthetic data generation further. They suggest the application
of alternate GAN architectures like Wasserstein Generative Adversar-
ial Network (WGAN) for future research. In accordance with their
work, we apply a WGAN for synthetic data generation, as well as the
evaluation by TSTR, but extend the evaluation with additional metrics.

Koochali et al. (2022) suggest standardized assessment methods for
the evaluation of synthetic time series data. They adapt widely used
image domain measurements like Inceptions Score (IS) (Salimans et al.,
2016) and Fréchet Inception Distance (FID) (Heusel et al., 2017) to
the time series domain, resulting in the measures Inception Time Score
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(ITS) and Fréchet Inception Time Distance (FITD). These metrics are
based on IS and FID which require a pre-trained established classifier.
The evaluation of generated data is supplemented by a classifier-based
evaluation in the settings of TSTR and TRTS As a showcase for the
evaluation protocol, a conditional GAN is trained and tested on 80
different time-series data sets from the UCR-Dataset repository (Chen
et al.,, 2015). The TSTR and TRTS settings will be applied in our
experiments to evaluate the application of synthetic data in the context
of anomaly detection-based NIDS.

Dankar et al. (2022) give an overview of different metrics for the
evaluation of synthetic data. They categorize the metrics in four main
classes, namely attribute fidelity, bivariate fidelity, population fidelity,
and application fidelity. Finally, the synthetic data of four different
data generators and 19 data sets are evaluated using the quality metrics
Hellinger Distance for attribute fidelity, Pairwise Correlation Distance
for bivariate fidelity, Propensity Score, and Prediction Accuracy for
population fidelity to assess the overall utility of synthetic data genera-
tors. The comparison of the four selected metrics suggests that there
is no strong correlation between the individual metrics. Therefore,
all metrics should be considered for multivariate quality analysis of
synthetic data. In our work, the hierarchy of data-driven similarity
metrics (Fig. 2) is influenced by their metric categorization.

Schlor (2022) focuses on anomaly detection in transactional data.
Variational Autoencoder and GAN are used to generate synthetic trans-
action data, which are evaluated in multiple ways. Firstly, the proba-
bility distributions of the synthetic data points are estimated via Kernel
Density Estimation, where a Gaussian Kernel is applied. Next, the prob-
ability distributions are compared via Jensen-Shannon divergence and
the Earth-Movers Distance. Secondly, the feature correlations of the real
and the synthetic data are compared via the Mean Absolute Error. The
correlational analysis includes Pearson’s correlation coefficient, Uncer-
tainty Coefficient and Correlation Ratio. Thirdly, the data distributions
are plotted in violin plots and histograms for visual comparison. While
other studies primarily focus on Pearson’s correlation coefficient, Schlor
(2022) broadens the scope by also analyzing correlations in both nu-
merical and categorical data. Our benchmark setup incorporates this
comprehensive feature correlational analysis for synthetic data, since
NetFlow data consist of a mixture of numerical and categorical features
and their analysis is an important aspect of data quality.

2.3. Evaluation of NetFlow generator models

Ring et al. (2018) evaluate the effect of data preprocessing on
the generation of NetFlow traffic via WGAN. They test a normalized
version of input data, a binary transformation of data, and an embed-
ding version. Their evaluation setup includes a visual comparison of
distributions, syntax checks, and the calculation of Euclidean distances
based on statistical values. Their experiments indicate that the binary
transformation and the embedding version work well for synthetic data
generation.

This work applied data-driven aspects, e.g. the comparison of dis-
tributions and domain-driven aspects, e.g. syntax checks for the evalu-
ation. While syntax checks can be applied as objective measurement,
visual comparison of distributions is a subjective measure since it
depends on the viewers’ opinion.

Guo et al. (2021) apply GANs to generate synthetic network data
for oversampling. Their goal is to use synthetic data for oversampling
minority classes, thereby enhancing the performance of classification
models. Their experimental setup compares their approach against
various other oversampling methods such as random oversampling.
They evaluated their approach through classification performance (F1-
Score and AUC-PR) of the models, for which the training data were
oversampled by the tested approaches. Their evaluation methodology
targets the application of synthetic data exclusively. Their experiments
show that their approach surpasses the other oversampling techniques.
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Fig. 2. A structured overview of different similarity metrics.

Liu et al. (2021) applies a WGAN as an oversampling approach as
well. Their approach is tested against other oversampling methods like
Random oversampling and different variants of SMOTE (Chawla et al.,
2002). The oversampling methods are tested on the data sets NSL-
KDD (Tavallaee et al., 2009), UNSW-NB15 (Moustafa and Slay, 2015),
and CICIDS-2017 (Sharafaldin et al., 2018b). In their experiments they
apply different classifiers, e.g. Naive Bayes, Decision Tree, Random
Forest, Gradient Boosting Decision Tree, and Support Vector Machine.
Classification performance is evaluated via standard classification met-
rics namely accuracy, precision, recall, and F1-Score. They report that
their oversampling method can effectively improve detection perfor-
mance. The application of synthetic data for oversampling targets the
generation of proxy data that can be applied instead of real data. Our
work will first focus on this notion, since the generation of proxy data
is a more general application setting.

Charlier et al. (2019) apply GANs for the generation of synthetic
network attacks, which is closely related to oversampling, since attack
data are commonly represented in minority classes. They test their
model on two benchmark data sets, namely NSL-KDD (Tavallaee et al.,
2009) and CICIDS2017 (Sharafaldin et al., 2018b). The generated data
are evaluated via visual inspection of histograms for each attribute of
the generated data. They report an adequate convergence of real and
synthetic data in their results. The evaluation methodology of this work
will not be used, as visual inspection is not objective.

Yin et al. (2022) compare different GAN-based design choices to
build their NetShare model for the generation of synthetic network
data based on packet or NetFlow traces. They compare several GAN
models from previous works to their approach on multiple data sets.
The results are evaluated based on distributional measures of different
attributes using empirical cumulative distribution function (CDF) plots,
distance measures like Jensen—Shannon divergence or Earth movers
distance, and via the classification quality based on classifiers in the
TSTR setting. Our work will not only include distributional measures
and the testing of data application through TSTR, but also extend this
concept to a broader range of metrics compared to their work.

Nekvi et al. (2023) focus on the generation of synthetic IoT network
traffic with the original GAN. They use a self-recorded data set consist-
ing of IoT-traffic and DDoS attacks. In their experiments, they evaluate
the effect of the batch size on the training behavior and generate data
after each training epoch of the GAN model. They evaluate data quality
exclusively through TSTR and report that it is a good metric to identify
quality data during the training and generation process. Due to the
inconsistent output quality of the GAN during the training process,
it is necessary to identify high-quality NetFlow batches in retrospect.
The TSTR setup is based on four classification models used for binary
classification (normal or attack) that are evaluated via accuracy. In
contrast to this work, our work evaluates the synthetic data with TSTR
as well but extends the evaluation to many more metrics.

Kholgh and Kostakos (2023) apply the OpenAIl’s GPT-3 API, where
they construct a pipeline for synthetic traffic generation. The genera-
tion model is based on GPT-3 variants that have been fine-tuned for
packet data generation. The pipeline contains the following steps: The
user requests specific traffic scenario like normal traffic, or certain
attack scenarios like Ping-of-Death. A Flow generator collects NetFlow
traffic, given the specified type of traffic, and parses it into text. Finally,

the NetFlow text is given to the Transformer model to create packet-
based data in text format based on the NetFlow text. The packets are
parsed in the packet format afterward. They test their approach on
the public available benchmark data sets DARPA, KDD99 and TON-
IoT. They evaluate their model based on loss and accuracy and the
generated packet data via the so-called success rate, which measures
packets that can be sent to the Internet and trigger a form of reply like
a Ping, DNS query or answer from an HTTP server, etc. Our approach
focuses on the generation of NetFlow data instead of packet-based data,
as well as the application and comparison of open-source generative
models.

2.4. Conclusion on related work

In general, GAN models are a popular choice for synthetic data
generation for NetFlow and other domains and will be applied in
our benchmark case study. Moreover, this overview highlights the
diversity and inconsistency in evaluation methodologies for synthetic
data, particularly when it comes to network or NetFlow data, which
emphasizes the need for an objective measurement to systematically
evaluate the quality of synthetic data sets and generators. Additionally,
there are various relevant theoretical dimensions for the evaluation
of synthetic data and generative model quality in other domains that
need to be explored and validated in the NetFlow domain. While
some statistical measurements like distance measures and correlations
within data can be generally applied to different types of data, domain-
specific measures or tasks are required as well to evaluate generated
data comprehensively. The demand for a comprehensive evaluation
setup for synthetic data is also stated in various works of other data
domains (Borji, 2021; Dankar et al., 2022; Koochali et al., 2022).

A brief survey on evaluation metrics is given in Section 4, where
several metrics discussed in this section are presented in detail.

3. Foundations

This section outlines the key elements of the data and machine
learning techniques employed in our benchmark. In the following, the
NetFlow file format and synthetic data are defined. Next, we describe
two generative models, the Wasserstein GAN and GPT-2, which are
employed to synthesize data.

3.1. NetFlow

The NetFlow file format (Claise, 2004) describes the data exchanged
in a session between the source and destination IP in an aggregated for-
mat. Therefore, the meta-information of the connection is aggregated
in time periods. NetFlow itself contains meta-information such as the
duration of transmissions, the transport protocol, the ports of source
and destination, the bytes sent and the amount of packets sent (Claise,
2004). Unlike packet-based traffic captures, NetFlow does not contain
any payload and requires less storage capacity.

There exist different tools to capture and convert network traf-
fic into specified NetFlow formats, therefore, the NetFlow formats of
published NetFlow data sets can differ. Since our work will focus on
measures for data similarity, we have to evaluate our measures on
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data, which are converted by the same NetFlow converter into the
same format, to avoid the risk of converter artifacts affecting our
similarity measures. The data used in the benchmark are NetFlows
from the data sets NF-CSE-CIC-IDS2018, NF-ToN-IoT and NF-UNSW-
NB15 based on Sarhan et al. (2021), who converted the original data
sets with the same NetFlow-Converter to the same NetFlow-Format for
comparability.

3.2. Synthetic data

Dankar et al. (2022) define synthetic data based on summarized
definitions of previous works (Hu, 2018; Ruiz et al., 2018; Park et al.,
2018), as artificial data that mimic the statistical properties of real
data, without containing identifiable information about real data. In
addition to creating a shareable and privacy-safe data set for further
experimentation, synthetic data can be applied to augment existing
data, completely replace real data, or act as a reasonable proxy for real
data (Goncalves et al., 2020). Our benchmark focuses on the ability to
mimic the statistical properties of real data and applying synthetic data
as a replacement for, or a reasonable proxy to, real data.

3.3. Wasserstein generative adversarial network

The GAN architecture, introduced by Goodfellow et al. (2014) is a
generative model which consists of two components, Generator (G) and
Discriminator (D). The model is trained through an adversarial game,
where G tries to create fake data that mimic real data, while D tries to
distinguish real from fake data. G receives noise as input and attempts
to generate data that resemble real data from noise. D is provided with
real or fake data and must differentiate between both. Based on D’s
loss, both networks are updated.

Based on the original GAN, multiple model variants attempt to
increase its performance. The WGAN (Arjovsky et al., 2017) is similar to
its original, but the original loss function is updated to the Wasserstein
Distance. In addition to improved training stability, this loss function
allows the acwgan to model discrete distributions over latent spaces.
While Arjovsky’s implementation uses weight clipping to enforce dif-
ferentiability of the Wasserstein loss, Gulrajani et al. (2017) apply a
gradient based penalty to enforce it via a soft constraint.

The GAN models are originally applied in the domain of image
synthesis but were adapted to other domains, e.g. NetFlows (Ring et al.,
2018) as well. In our benchmark, the model is applied to NetFlow data
which are encoded into continuous numerical representations, since
neuronal networks are not able to process categorical attributes by
default. The generated data are then decoded into the original NetFlow
format, before they are evaluated.

3.4. Generative pretrained transformer 2

GPT-2 (Radford et al., 2019) is a large-scale language model based
on multiple transformer decoder blocks. The model has been suc-
cessfully applied to various tasks in the domain of natural language
processing such as reading comprehension, question answering, and
translation (Radford et al., 2019).

The training of the model consists of two phases, which are pre-
training and fine-tuning. The self-supervised pre-training is applied via
next token predictions, where the model predicts the next token given
a sequence of previous tokens. This allows GPT-2 to model the overall
data distribution. Afterward, the model can be fine-tuned with labeled
data for specific tasks. Our work will focus exclusively on the generative
properties of the pre-training phase to generate NetFlow data.
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4. Evaluation metrics review

This section targets the literature review for synthetic NetFlow
quality assessment. The evaluation of synthetic data in general is an
ongoing research topic. According to Dankar et al. (2022) there is
currently no general guideline on evaluation. Based on our research,
there are multiple metrics to measure the similarity of real and syn-
thetic data. The following survey covers various aspects of quality
metrics from previous works that have been applied to determine the
similarity between synthetic and real data in the domain of NetFlow
data, as well as other data domains like images or medical data. Table 1
lists various approaches for evaluating synthetic data, highlighting the
lack of common evaluation guidelines, as evidenced by the minimal
overlap of the metrics applied in different studies. Furthermore, Table 1
highlights several metrics that were already applied in other domains
but not yet in the domain of NetFlows.

The various measures identified in our survey, can be hierarchically
categorized, as depicted in Fig. 2. There exist two main categories
of similarity metrics. The first category is entirely data-driven and
independent of the data domain, while the second category exploits
domain knowledge to evaluate synthetic data. The diagram in Fig. 2
gives a structured overview, while the details for each category are
discussed in the following.

4.1. Data metrics

In order to compare real data with synthetic data, data-based mea-
sures can be applied to compare various characteristics of data sets.
These measures can be applied to a broad range of data sets, since the
metrics are domain independent.

4.1.1. Measures for single attributes

The attribute fidelity of data sets can be compared by using different
types of distance measures, that compare the distance of real and syn-
thetic data. The scope of the single attribute metric is to compare the
properties e.g. the distribution of single attributes in the multivariate
data distribution to determine their similarity. Common choices for
these distance measurements are based on probability distributions,
such as Kullback-Leibler divergence (KLD) (Kullback and Leibler, 1951)
or Jensen-Shannon divergence (JSD).

Probability distributions from data sets. Metrics that compare the simi-
larity of distributions require a distribution P;, generated from sampled
data points D in the application of measures for distributional di-
vergence. In our setting, a Gaussian Kernel-Density-Estimation (Scott,
2015) KDE(D,) is applied for numerical features D, of D. Categorical
Attributes D, are converted into an empirical distribution via relative
frequency counts called P,(D) according to the work of (Yin et al,
2022).

_ [KDED,)
"~ ry

if D, numerical
@

if D, categorical

Kullback-Leibler divergence. Given the observed values of synthetically
generated data as a probability distribution P¢ and some known real-
istic data as probability distribution Py, the KLD allows the compar-
ison of both probability distributions through measuring the relative
entropy, and can be used as a distance through

Pr(x)

2
e (2)

diq, (Pr || Ps)= Y Pr(x)log
xeX

for the sample space X. The resulting KLD is a widely established

distance function that is commonly used as a measure in generative

settings (Dankar et al., 2022).
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Table 1
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Literature review of the evaluation metrics used for synthetic data from the NetFlow(highlighted via ¥¥) or other domains, references in the

paper column refer to their application in earlier works.

Category Metric Paper
Single Jensen-Shannon divergence Schlor (2022) and Yin et al. (2022)NF
attributes Hellinger distance Dankar et al. (2022)
Wasserstein/Earth-Movers distance Yin et al. (2022)NF
Support-Coverage Goncalves et al. (2020)
Multiple Pearson correlation Goncalves et al. (2020), Dankar et al. (2022) and Schlor (2022)
attributes Correlation ratio Schlor (2022)
Uncertainty coefficient (Theils U) Schlor (2022)
Pairwise Correlation Distance Pearson Goncalves et al. (2020) and Dankar et al. (2022)
Mean absolute error Schlor (2022)
Population Discriminator Goodfellow et al. (2014)
Classifier-Two-Sample Test Lopez-Paz and Oquab (2016) and Ehrhart et al. (2022)
Propensity score Dankar et al. (2022)
Euclidean distance Ring et al. (2018)NF
Cluster analysis Woo et al. (2009) and Goncalves et al. (2020)
Memorization Memorization-Informed- Bai et al. (2021)
Frechet Inception Distance
Presence-Disclosure Choi et al. (2017) and Goncalves et al. (2020)
Attribute-Disclosure Choi et al. (2017) and Goncalves et al. (2020)
Rule based Syntax checks Ring et al. (2018)NF
Domain Visual comparison of distributional plots Ring et al. (2018)N¥, Charlier et al. (2019)¥F and Schlor (2022)
expert Visual inspection of data Choi et al. (2017) and Ehrhart et al. (2022)
Application Train on Real, Test on Synthetic (TRTS) Goncalves et al. (2020) and Dankar et al. (2022)
based Train on Synthetic, Test on Real (TSTR) Goncalves et al. (2020) and Dankar et al. (2022)

Oversampling

Yin et al. (2022)¥F and Nekvi et al. (2023)NF
Guo et al. (2021)NF and Liu et al. (2021)NF

Jensen—Shannon divergence. JSD is a bounded symmetric variant of
KLD, whose square root may be used as a distance metric, in contrast
to KLD satisfying the triangle inequality. It is defined by

i (P | P = [ KLy 1 P+ KL (P 1 By) ®
where
Py, = %(PR + Pg) @

JSD constitutes another popular choice for evaluating data genera-
tion (Yin et al., 2022). Next, we calculate the average over all features
i of D, where each feature is transformed into a probability distribution
Pp

n

= 1
dys(R,S) == - Z

%)

dys (P Il Pg)
X

Schlor (2022) generates synthetic transactional data and applies
JSD to compare the distributions of real and synthetic data for the
comparison of different generators. Yin et al. (2022) generates synthetic
packet-based and NetFlow data via their NetShare model to compare it
with various GAN-based approaches. One of their applied metrics is the
JSD.

Earth mover’s/Wasserstein-1 distance. Earth Mover’s Distance (EMD)
distance (sometimes also referred to as Wasserstein-1 distance) rep-
resents the necessary probability weight to move when transforming
probability distribution Q to probability distribution P, and is formally
given as

dey(R,S)= inf  E
EM YEI(R,S) (x.y)~

[l = ylIT, (6)

with IT(P, Q) denoting the set of all possible joint distributions y(x, y)
with marginals P and Q. Here, the infimum finds the way of distribut-
ing the probability weight between both probability distributions with
the least cost.

Yin et al. (2022) use the EMD as another evaluation metric for
the performance comparison of several generator models for Net-
Flows. Schlor (2022) does not use the EMD. The author argues that this
metric is an optimization metric applied in the WGAN and therefore,

this model is explicitly optimized toward this metric, which prevents a
fair comparison of WGAN to other models with another optimization
criterion.

Support coverage. Support Coverage S, (Goncalves et al., 2020) mea-
sures the average ratio of the cardinalities based on the support of the
variable. Support represents the proportion of a particular value of a
variable.

R
IRV

4
S(RS)=1 Y, @)
R and SY are the support of the V'th variable for the real and synthetic
data and V is the set of random variables representing the variables to
be generated.

Goncalves et al. (2020) generate medical data sets and use the
Support Coverage to measure the difference of the support value of a
variable in the real data compared to the synthetic data. They use the
metric in the comparison of data generation approaches to determine if
all the categories in the real data appear in the synthetic data, as well.

Hellinger distance. Hellinger distance, used by Dankar et al. (2022) for
the evaluation of synthetic data, is another distance metric based on
probability distributions. Given two probability distributions Py and
Py, the Hellinger distance dy; is calculated via

dy(Pg, Pg) = é H\/P_R— \/175”2 (8

Dankar et al. (2022) favor this measure for the comparison of real
and synthetic data distributions in the area of medical data, over the
KL-Divergence since its value ranges from O to 1 and is therefore easy
to interpret. A comparison with other metrics such as the JSD, which
also has a value range of 0 to 1, is not included in their argumentation.

4.1.2. Measures for multiple attributes

Aside from matching the distribution of single attributes, synthet-
ically generated data also need to match the relationship between
multiple attributes. Here, correlations between multiple attributes are
calculated separately on real and synthetic data, with correlations of
synthetic data expected to closely match the observed correlations
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within real data. We argue that the correlations reflect the relationship
between two attributes and can be applied to assess integrity of the
underlying data.

This evaluation poses the additional obstacle of mixed data types.
While many established correlation measures may be used to investi-
gate the correlation of two numerical or two categorical attributes, a
deeper investigation of correlations also requires measures that enable
investigation of inter-correlation between numerical and categorical
attributes. Our correlational measures are closely following Schlor
(2022), who successfully evaluated synthetic tabular data in the domain
of fraud detection systematically via various correlational measures.

Pearson’s correlation coefficient. For correlations between numerical
attributes, Pearson’s correlation coefficient (corp) is an established
measure that has been successfully used to evaluate synthetic data
(Goncalves et al., 2020; Dankar et al., 2022; Schlor, 2022). The corp is
calculated through the standardization of the covariance between both
attributes by

E[(X - ECO))Y - EQX))]

corp(X,Y) = pagpn ()
X0y

with 6,06y denoting the standard deviations of the observed values of
two attributes, denoted as random variables X and Y. Dankar et al.
(2022) and Goncalves et al. (2020) use the corp matrices of synthetic
and real data in the medical domain and compare the two matrices
based on the Pairwise Correlation Distance to measure the difference
between them. Schlor (2022) applies the corp as well as Uncertainty
Coefficient and Correlation Ratio in the area of transactional data to
calculate correlation metrics of real and synthetic data, but compares
the differences using the mean absolute error metric. The attributes of
a NetFlow can be categorized into numerical and categorical attributes,
therefore the Pearson’s correlation coefficient can be used to determine
correlations between numerical attributes.

Uncertainty coefficient. To calculate the correlations between categori-
cal attributes, the uncertainty coefficient U (also referred to as Theil’s
U) (Theil, 1970) can be applied. With samples given from two dis-
crete random variables X and Y, their joint distribution Py y (x,y) and
conditional distribution Pyy(x | y), the uncertainty coefficient can be
calculated. The uncertainty coefficient is directly based on the entropy
H of a single distribution and the conditional entropy H(X | Y),
defined as

H(X) ==Y P(x)log P(x) (10)
xeX
P(x,y)
HX|Y)=- P(x, )1 11
X17) XZyY (x.3) log = an
cory(X,Y)=1- %}'{)Y) 12

Similar to the Pearson’s correlation coefficient, the Uncertainty
Coefficient can be applied to NetFlows for measuring the correlation
between categorical attributes.

Correlation ratio. The correlation (cor,,) (Fisher, 1992) can be used to
measure the correlation between categorical and numerical attributes,
as a measure based on the variance of the numerical attribute. The cor,
divides the data of the numerical attribute Y into subsets Y, per distinct
attribute values of each categorical attribute x € X, and compares the

variances across these sets to the variance across all data,
> V(¥ = T)?
X,(y=Y)?

where |Y| denotes the number of data entries within Y, Y = E[Y]
denotes the mean over Y and Y, = E[{Y; : X, = x}] the mean over
each Y; € Y for which the feature X; has the value x.

Just like the correlation metrics mentioned above, the Correlation
Ratio can be applied to NetFlows for measuring the correlation between
numerical and categorical attributes.

cory(X,Y) = a3
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Pairwise correlation distance. The Pairwise Correlation Distance (PCD)
measure how much the pairwise feature correlation for two data sets
is given by calculating the difference in terms of Frobenius norm
(Goncalves et al., 2020) by

PCD(R, S) = ||cor(R) — cor(S)|| r, (14

for real R and synthetic S data correlation matrices cor(-) that captures
all pairwise feature correlations within a data set. The smaller the
PCD value, the closer are the two data sets in terms of the underlying
correlation measure.

Mean absolute error. Another way of aggregating the correlation matrix
cor(+) into a single value is the Mean Absolute Error (MAE) of the two
correlation matrices (Schlor, 2022), which is beneficial since the result-
ing values are in the interval of the underlying correlation measures and
are therefore restricted to the interval of O to 1. It is defined as

nyony
MAE(cor(R), cor($) = =5 3 3 [cor(R,, R;) = cor(S}, 5)) as)
npm S

where R;, R; and S;, S; are the features of the real R and synthetic §
data at index i and j and n, is the number of overall features.

4.1.3. Population

Discriminator. The Discriminator of GAN models, which were success-
fully applied to NetFlows (Ring et al., 2018; Yin et al., 2022), learns
to separate real and synthetic data and is an essential part of the GAN
architecture. Inspired by this discriminator concept, an unsupervised
anomaly detection model can be applied to separate real and synthetic
data. Synthetic data are labeled as class synthetic, while real data are
labeled as class real. The model is trained on synthetic data and tested
on real data. If the synthetic data are able to capture the properties
of the real data, the model should classify the real data as normal in
the test setting, resulting in many false positives, because the model
cannot separate the two data distributions. If the synthetic data do not
cover the distribution of the original data, the model will separate data
outside the original data distribution as anomaly, resulting in few false
positives. Overall, the Discriminator model performance is evaluated
via the well-known false positive rate (FPR), where a high FPR indicates
synthetic data close to the original data.

Classifier two-sample test. The Classifier Two-Sample Test (Lopez-Paz
and Oquab, 2016) applies a binary classifier model. The real and
synthetic data get labels according to their class (real or synthetic).
The data of both classes are then used to create training and test sets
for the model. Under the assumption that the train data and synthetic
data have similar properties, the trained binary classifier shall not be
able to separate real and synthetic data in the test set. This results in
a random guess probability in a two-class classification setting. The
expected accuracy score of the classifier is around 0.5. The Classifier
Two-Sample Test is sensitive to the choice of the underlying binary
classifier model. In essence, a binary classifier is a Discriminator model
that pursues to separate the data sets.

Propensity score. Propensity Score (Woo et al., 2009), originally in-
troduced to measure the utility of modified or anonymized data, can
be applied to evaluate synthetic data from generative models shown
by Dankar et al. (2022). Woo et al. (2009) evaluate different models
to calculate propensity scores and conclude that the model-choice is
crucial for the application of the propensity score, as a utility measure.
The Propensity score is calculated in multiple steps. First, the original
and masked data are combined, but the labels for the original and
masked data indicate their origin. Second, the probability that a data
point belongs to the masked data class is calculated, the so-called
propensity score. Third, the predicted distributions of the propensity
scores in the original and masked data are compared. The higher the
similarity between the distributions, the greater the utility of the data
should be, according to Woo et al. (2009).
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Euclidean distance. The Euclidean distance measures distance between
numeric vectors (Han et al., 2011). It is defined as

dr,s) = \/(r] — )2 (1, — 5, (16)

where p represents the number of dimensions in the vectors r and s.
In general, one can apply a distance function on vectors to measure
their similarity under the assumption that vectors with a low distance
represent vectors with similar properties. The NetFlow data are mixed
type data by default, but the Euclidean distance is defined numerical
vectors exclusively and requires future research to adapt this metric to
mixed-type NetFlow data.

Ring et al. (2018) applied this metric to calculate the Euclidean
distance between the probability distributions of real and synthetic
NetFlows, thus determining the effects of data preprocessing on the
data generation performance of GANs.

Cluster-analysis measure. Another measure for data population similar-
ity is the Cluster-Analysis Measure. The Cluster-Analysis Measure is
evaluated in the setting of original and masked data similarity (Woo
et al., 2009) and the setting of real and synthetic data similarity
(Goncalves et al., 2020). Let N, and N, be sizes of the two groups for a
random partition of a data set. The percent of observations ¢ belonging
to group O can be calculated by

¢=Ngo/(Ng+ Nyp). a7)

At first, the Cluster-Analysis Measure merges two data sets into one
and the whole data are clustered with a fixed number of resulting
clusters or groups (for example by k-means). Afterward the cluster
measure U is calculated

1 < njo 2
—_— _j [
Uec = rel jzzl w; [ ", c] s (18)

where G is the fixed number of clusters, n; is the number of observa-
tions in the jth cluster, n 0 (n ; ) is the number of observations from the
original (or masked) data in the jth cluster, w; is the weight assigned
to the jth cluster to reflect the importance of particular clusters, and
¢ is the percentage of the observations in each cluster that belong to
group N, (original data). Large values of U, indicate differences in the
cluster memberships, which suggest differences in the distributions of
the original and masked data.

According to Woo et al. (2009) this measure has several drawbacks.
First, the number of clusters G is a hyperparameter, which needs to
be determined through hyperparameter studies. Second, U, does not
reflect if data masking is useful, since the measure gives the ratio of
cluster memberships but does not account for the separation or distance
between clusters. Third, the measure does not handle the similarity of
data points, e.g. when they are close to each other (distance) but as-
signed to different clusters. In their empirical evaluation, the propensity
measure is shown to be more promising than the cluster-based measure.

4.1.4. Memorization and disclosure of original data

A common characteristic of memorization detection is the usage of
distance measures to detect data points or attributes in the synthetic
data that have a strong similarity or a low distance to data points from
the real-world data set that were used to train the model.

Memorization-informed Frechet inception distance. The benchmark study
of Bai et al. (2021) proposes a modified variant of the FID, where a
memorization penalty is added. The penalty uses cosine similarity to
compare images, where images that are closer to original ones than
a threshold value are penalized. Their approach is specialized on the
image domain, where pre-trained image classifiers are used (Szegedy
et al., 2014) that cannot be adopted to the NetFlow domain.
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Attribute- and membership disclosure. Choi et al. (2017) examine two
variants of disclosure, presence disclosure, and attribute disclosure.
Membership disclosure means that synthetic data contain a data point
that is quite similar to or a duplicate of a real-world data point of
patient data used for training the model. In their experiments, the Ham-
ming Distance is used to determine the similarity of two datapoints.
The term attribute disclosure describes the possibility of inferring sen-
sitive attributes of real-world patient data by analyzing a subset of
attributes known by an attacker. Original attribute information can be
derived from synthetic data points that are closely related (e.g. via
distance measures). Given these resemblances, it is possible to reveal at-
tributes through majority vote. This allows an attacker to reveal private
information about patients if the generative models memorize the real-
world data set. The handling of distance measures for data points with
mixed-type features (numerical and categorical) that occur in NetFlows
requires a study on its own, in order to apply the membership disclosure
and attribute disclosure approaches suggested by Choi et al. (2017).

4.2. Domain metrics

The second type of evaluation metrics is more specific to the domain
of the data. These metrics can exploit domain knowledge to determine
the utility of synthetic data.

4.2.1. Rule based

Some domain specific data are constrained by certain rules, which
can be used to check the syntactical correctness of data. Syntax checks
are a rule-based measurement of data quality, where hand-crafted
sanity checks are applied to synthetic data in order to evaluate if
a generator is able to, for example, model simple distribution value
ranges of attributes or the correct number of attributes per NetFlow in
general. Ring et al. (2018) use domain knowledge checks, which are
a set of hand-crafted rules to check the realism of generated NetFlows.
The checks range from simple rules e.g. UDP-NetFlows that should not
contain TCP-Flags or Network-specific rules e.g. the netbios messages
should be sent by specific internal IP-addresses.

4.2.2. Domain expert evaluation

Domain experts are familiar with the domain and its data. There-
fore, they are able to evaluate samples based on prior knowledge.
Ehrhart et al. (2022) evaluate samples of time-series sensor data via
domain experts. Choi et al. (2017) evaluates synthetic medical data
via expert evaluation from a medical doctor. Ring et al. (2018) uses
violin plots to represent data distributions that can be visually com-
pared for evaluation purposes. Charlier et al. (2019) visualizes dis-
tributions via histograms for the visual comparison of real and syn-
thetic data. Schlor (2022) visualizes distributions via histograms and
correlations via heatmaps.

4.2.3. Application based

The quality of synthetic data can be evaluated by using them in
domain-specific applications, e.g. in classification settings. Under the
assumption that the generated data are labeled, classifiers can be
trained, tested, and evaluated.

There exist two main settings, which are Train on Synthetic, Test on
Real (TSTR), and Train on Real Test on Synthetic (TRTS) (Goncalves
et al., 2020; Dankar et al., 2022). Both classifiers provide classification
results, which can be compared against a classifier which is purely
trained and evaluated on real data, via confusion matrix and standard
classification metrics like accuracy, precision, recall, false positive rate,
etc.

As shown by Yin et al. (2022), this metric can be applied in the
domain of NetFlow. Although, they applied TSTR exclusively, the TRTS
setting is applicable as well.

A more specific use case for synthetic NetFlow data is data aug-
mentation in terms of oversampling (Guo et al., 2021; Liu et al., 2021).
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Most network traffic consists of normal traffic, while different types
of attacks are special abnormal behavior in a network representing
minority classes. Many classifiers for multi-class classification require
balanced class distributions to learn properly. A classifier is trained on
the original data with the skewed distribution and the over-sampled
data, augmented via synthetic data. The performance gain of the clas-
sifier allows conclusions to be drawn about the quality of the synthetic
data.

4.3. Anomaly detection and classification models

The NetFlow-Benchmark data sets are labeled and therefore can be
used to train intrusion detection systems. Our benchmarks apply an
anomaly detection method, in the settings TRTS, which has already
been successfully applied in the NetFlow domain (Yin et al., 2022)
and additionally TSTR. This setting requires an established and reliable
model with a low training time. Isolation Forest, One-Class Support
Vector Machine and XGBoost meet these criteria and are used for TSTR
and TRTS in our benchmarks. A short description of each model is given
in the following.

Isolation Forest (IF) (Liu et al., 2008) is a well-performing unsu-
pervised anomaly detection method with a low training time on a
recent large-scale anomaly detection benchmark (Han et al., 2022).
This model-based anomaly detection method isolates anomalies explic-
itly via an ensemble of Isolation Trees (iTrees), where anomalies are
detected via the shortest average path lengths on the iTrees. IF features
a linear time complexity with a low memory requirement, and works
well with high dimensional data and training data which do not contain
any anomalies.

The One-Class Support Vector Machine (OCSVM) (Scholkopf et al.,
1999) is another established unsupervised anomaly detection method.
The algorithm estimates the support vectors of a hyper-plane that
separates all the data points from the origin in the feature space of a
single class. When unseen data points (test data) are below the hyper-
plane and closer to origin, they are classified as outliers. The OCSVM
employs kernels to differentiate between data distributions of various
shapes and, considering the noise inherent in real-world data, utilizes
soft margins. Soft margins allow some misclassified data points, in
order to prevent overfitting to noise.

XGBoost (Chen and Guestrin, 2016) is a tree boosting algorithm for
supervised classification that handles sparse data and scales to billions
of data points while maintaining low resource requirements. XGBoost
has been successfully applied in many experiments and provides state-
of-the-art results (Chen and Guestrin, 2016; Han et al., 2022) on various
data sets.

5. A benchmarking methodology for NetFlow data

This section describes the methodology behind our proposed bench-
marking process. At first, suitable metrics for our benchmark are se-
lected based on our metric review in the previous Section 4. Next, we
construct summarizing metrics, that aggregate multiple metrics based
on our metrics hierarchy (see Fig. 2). Finally, we define our overall
benchmarking process.

5.1. Benchmarking metric selection

According to Goncalves et al. (2020) there is no one-size-fits-all ap-
proach to synthetic data evaluation, and evaluation approaches must be
tailored to the domains. NetFlow data contain attributes of numerical
and categorical types. There are either methods that will process both
types of attributes, or there are different methods for each attribute
type. Based on the metrics hierarchy in Fig. 2, we select metrics for
each subgroup of metrics (bottom row in the diagram) to cover the
different focus of each comparison metric of the respective category.
In our selection process, we favor metrics that have been successfully
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applied to NetFlows in previous works; otherwise, we check the suit-
ability of metrics from other data domains. Our selection focuses on
objective metrics for various aspects of similarity with value ranges
from [0, 1] that can be easily aggregated by averaging multiple metrics
of various aspects. Table 2 summarizes which metrics will be used in
the benchmark.

Single attribute. We will apply the Jensen—Shannon divergence be-
cause of its value range from [0, 1] and has been applied in the Net-
Flow domain before by Yin et al. (2022). The Earth Mover’s Distance
(Wasserstein-1 distance) is not used since this measure is part of the
WGAN, where this distance is applied in the loss function and the
Earth-Movers distance does not range from [0, 1], which complicates
the application among different data sets, which can result in different
value ranges. The Euclidean distance has to be modified to handle
mixed-type data points like NetFlows and therefore requires funda-
mental research in application on this domain. The Support Coverage
and Hellinger-Distance are metrics evaluated in other data domains
to compare distributions, but are neglected in favor of the established
Jensen-Shannon divergence.

Multiple attributes. The metrics Pearson’s correlation coefficient, uncer-
tainty coefficient, and correlation ratio calculate data correlations, but
differ in the type of data they can process. None of the correlation
metrics have been applied to the NetFlow domain for synthetic data
evaluation previously, but they appear relevant since they measure
correlations in the underlying multivariate data. For example, in real-
world data, the TCP protocol and Flags typically appear together,
whereas UDP and Flags do not. To measure the similarity of data
in terms of correlations between attributes, all three measures are
required for mixed type NetFlow data. In order to aggregate the cor-
relation matrices to a single value, the Pairwise Correlation Distance
or Mean Absolute Error can be used. Our metric selection favors the
Mean Absolute Error because of its value-range from [0, 1].

Population. There exist multiple model-based ways to evaluate the sim-
ilarity of two populations. The simplest approach is a discriminator that
is trained to separate the two populations. The Classifier Two-Sample
Test and Propensity Score are closely related to the discriminator
model. In our benchmark, we use two discriminator models, namely
the Isolation Forest and the One-Class Support Vector Machine, which
are evaluated based on the False Positive Rate. Data set one is labeled
as class normal, while data set two is labeled as class anomaly. The
models are fitted on data set one and tested on data set two. Unrelated
data would be perfectly separated, resulting in zero false positives (FP).
If the data are very similar, they shall not be separated perfectly by the
discriminator model, resulting in many FPs. Based on these assump-
tions, the discriminator IF is evaluated via the commonly used false
positive rate (FPR) metric, where a higher FPR indicates a higher sim-
ilarity of two data sets. The Discriminator addresses the fundamental
dependency of the Classifier Two-Sample Test and the Propensity Score,
which are not considered in favor of the fundamental Discriminator
evaluation using FPR. Ring et al. (2018) applied the Euclidian distance
to measure the distance of a synthetic data distribution and the real
data distribution, but a detailed mathematical motivation is missing,
that is required since the Euclidean distance is defined for data points
exclusively but not for probability distributions. Moreover, this metric
is not restricted to a range of [0, 1] and is therefore less favored for our
use case.

The Cluster-Analysis measure is based on unsupervised clustering of
data, but has several drawbacks in terms of hyperparameter tuning and
overall reliability (Woo et al., 2009) and is therefore not considered as
a population-based similarity measure.
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Table 2
Overview of evaluation metrics used for NetFlow evaluation in this work.
Category Scope Metric
Data Single attribute Jensen-Shannon divergence
Multiple attributes Pearson correlation coefficient, Correlation ratio, Uncertainty coefficient
Population Discriminator (IF, OCSVM)
Domain Task application TSTR, TRTS (IF, OCSVM, XGBoost)

Rule based

Syntax-Checks for NetFlows

Table 3 Table 4
NetFlow syntax check definitions. The NetFlow attributes with the applied syntax checks.
Syntax check Definition Attribute Syntax checks
IP-Address Check if the IP address contains four octettes, IPV4_SRC_ADDR IP-Address
where each octettes value ranges from 0 to 255. L4_SRC_PORT Port
Port Check if the port range is in the range from 0 to 2°2. IPV4 DST ADDR IP-Address
Label Check if the labels is 1 or 0. L4 DST_PORT Port
TCP-Flags Check if UDP-NetFlows do not contain TCP-Flags. PROTOCOL Pos%t%ve values
L. . . IN_BYTES Positive values, In and Out sum
Positive values Check if (float) value is larger or equal to 0. .
OUT_BYTES Positive values, In and Out sum
In and Out sum Check if the sum of in and out values is greater 0 IN_PKTS Positive values, In and Out sum
per NetFlow entry e.g. for in and out bytes OUT_PKTS Positive values, In and Out sum
TCP_FLAGS Positive values, TCP-Flags
FLOW_DURATION_MILLISEC. Positive values
Label Label

Memorization. The Memorization-Informed Frechet Inception Distance
is not considered due to the missing InceptionNet Model in the NetFlow
domain.

The Hamming Distance calculates the distance between two cate-
gorical sequences. The NetFlows contain mixed types attributes and
therefore, the Hamming Distance cannot be applied to NetFlow.

Since both metrics have preconditions that are not met in the
domain of NetFlows, they are both discarded in our benchmark.

Application based. The application based evaluation of the TRTS and
TSTR setting uses the models IF, OCSVM and XGBoost. The NetFlow
data sets contain labels that indicate normal behavior or attacks. The
models are trained on the (normal)' data from one data set (e.g syn-
thetic) and tested on the other data set to evaluate the data in the TSTR
and TRTS setting. In this setting, the model’s performance is evaluated
using F1-Scores, with higher values (approaching 1.0) indicating that
the synthetic data adequately capture task-specific properties, thereby
enabling the training of an effective classification model. This measure
is an indicator for the practical applicability of the generated labeled
data.

Specific applications such as data augmentation for oversampling
(Guo et al., 2021; Liu et al., 2021) are out of scope for our benchmark.
Data augmentation for oversampling requires the application of special
generative models that focus on the generation of minority classes,
instead of generating the complete data distribution.

Rule based. The Syntax Checks for NetFlows are based on the technical
constraints which are defined by the NetFlow-Format. These rules are
fundamental for the application of NetFlow data and are used in our
benchmark.

The applied syntax checks for each NetFlow feature in Table 4 are
defined in Table 3.

The visual inspection of generated data and its distributions by
domain experts is challenging due to the limited availability of such
experts and the fact that subjective evaluations cannot provide objec-
tive measurements. The evaluation of raw data by domain experts is
therefore discarded in our benchmark.

5.2. Constructing joint metrics for netflow data

In our benchmark, we apply the similarity metrics in Table 2. The
metric selection compiled a setup of 14 metrics which evaluate diverse

1 For IF and OCSVM.

10

aspects of similarity, but they are hard to use in a setting where one
wants to compare the similarity of two data samples. If we have a
sample of real data R and samples of synthetic data .5, from generator
A and samples .S from synthetic data generator B, it is inconvenient
to compare 14 different metrics individually and determine if S, or
Sp more similar to R. Especially if one wants to use the metrics as an
optimization criterion, e.g. in the setting of hyperparameter-tuning for
deep generative models, the evaluation of 14 metrics is inconvenient.
The following proposes our methodology to aggregate the metrics based
on our metrics hierarchy in Fig. 2, where we aggregate the metrics
based on the two distinctive subgroups Data Metrics and Domain Metrics.
While the Data Metrics can be applied independent of the underlying
domain and can be applied to other domains, the Domain Metrics exploit
characteristics of the underlying domain, e.g. the syntax of the data.

Data metrics aggregation. The Egs. (19) to (23) define how the Data
Dissimilarity Score (DSimg,,) is calculated by averaging selected data
similarity metrics.

Simy(R, S) + Simeor(R, ) + Simpop(R, S) 19

DSimgaa(R, S) =

NdataMetrics

The single attribute metric Eq. (20) is applied to each attribute
individually (pairwise for each) and then averaged.

Simy(R, S) = d;5(R., S) (20

The correlation metrics Eq. (21) are calculated for each data set, and
two data set correlations are compared afterward. The difference in the
resulting correlation matrices is aggregated using the Mean Absolute
Error Eq. (22).

corp(X,Y) if X and Y numerical
cor(X,Y) =qcor,(X,Y) if X cat. and Y num. (21)
cory(X,Y) if X and Y categorical
n n
. 1
Simey, (R $) = — >y ‘cor(R,-, R;) = cor(S;, S;) (22)
i

The similarity in terms of the data population Eq. (23) is evaluated
via a discriminator model that distinguishes two data sets from each
other. The classification results are evaluated using the false positive
rate.

Simpep(R, S) = FPRp(R,S)+ FPRp(S,R)
De{IF,0CSVM}

(23)
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Domain metrics aggregation. The Domain Dissimilarity Score
(DSimgomain) in Eq. (24) is the average value of the selected domain-
specific metrics. The R and .S value in each equation refers to the first
(or real) and the second (or synthetic) data sets that are evaluated.

Simyg (R, S) + NSyntaxCheckErrors(S) (24)

DSimdomain(R, S) =
NdomainMetrics

The synthetic data are filtered based on syntax checks (Table 3),
since syntactical correctness is required for the application of similarity
metrics. The ratio of syntactically wrong NetFlows NgynaxcheckErrors
counts the number of NetFlows which contain at least one syntax error.
NetFlows with more than one NetFlow syntax error are counted as one
syntactically wrong Netflow.

The task-specific application of the data is evaluated via an anomaly
detection task Eq. (25), where the normal and attack labels of the
NetFlow data are leveraged.

Simgg (R, S) = (1= F1(R,S)+ 1= F1(S,R)
Te{IF,0CSVM,XGB}

(25)

The label distribution of the data sets is unbalanced. Therefore, metrics
such as accuracy are inadequate since they do not consider imbalanced
distributions (Han et al., 2011). The F1-Score is the harmonic mean of
precision and recall with a value range between 0 and 1, where 1 is
the best value. In our setting the anomaly detection model is evaluated
via the F1-Score metric with the averaging methods of macro, micro
and weighted. The micro-averaging counts the total true positives,
false negatives, and false positives to calculate the metric globally. The
macro-averaging calculates the unweighted mean for each label and
does not consider label imbalance. The weighted averaging calculates
the label average weighted by the number of true instances for each
label. This is similar to macro-averaging, but considers imbalanced
labels. Since the NetFlow data sets are highly imbalanced in terms of
normal and malicious traffic, we focus on the weighted F1-Score.

5.3. Process of benchmarking synthetic NetFlow data

The benchmark process depicted in Fig. 3 is executed in two phases.
In a pre-study, the application of the selected similarity metrics is
evaluated on published benchmark data sets. From each data set 30
subsets, consisting of 10,000 random samples each, are drawn. On
the basis of these samples, the similarity of data from the sample
distribution (intra data sets) can be calculated. The similarity of samples
from a different distribution (inter data set) is calculated as well.

The values of the intra and inter data set can be used as guidelines
to evaluate the similarity of synthetic data in the study. Next, we
apply similarity metrics to synthetic data that were generated by our
generative models. Here, the metrics calculate the similarity of a sample
of the real-world data set and the synthetic data set. With the intra and
inter data set similarities, an upper- and lower bound for the similarity
is set, which is used in the assessment of the synthetic data.

6. Metric selection validation on real data

This section describes the application of the metrics to evaluate the
selected similarity metrics for NetFlow data. It explains the general
setup, the used data sets, and their preprocessing. Next, data processing
for the generative models and the processing scheme for the synthetic
data are given.

6.1. Setup

Data. For the evaluation of similarity metrics, several commonly used
benchmark data sets, which are designed for Network Intrusion De-
tection Systems, are used. In order to achieve a comparable setup
regarding the data sets, the benchmark utilizes the data sets of Sarhan
et al. (2021), who transformed established benchmark data sets into a
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common NetFlow format. In the benchmark, we use the transformed
data sets: NF-CSE-CIC-IDS2018, NF-ToN-IoT and NF-UNSW-NB15.

NF-CSE-CIC-IDS2018 (originally published in Sharafaldin et al.
(2018a)) was released by the Communications Security Establishment
(CSE) and the Canadian Institute for Cybersecurity (CIC). It is based
on a company network consisting of multiple departments. Normal
traffic is generated via realistic network events generated by abstract
human interactions. The attacks are executed from clients outside the
company network. The data set contains 8,392,401 NetFlows, with
87.86% normal and 12.14% attack NetFlows.

NF-ToN-IoT (originally published in Booij et al. (2022)) was re-
leased by the University of New South Wales (UNSW) Sydney. It
consists of Internet of Things (IoT) and Industrial IoT traffic generated
by services and devices. The data set contains 1,379,274 NetFlows, with
19.6% normal and 80.4% attack NetFlows.

NF-UNSW-NB15 (originally published in Moustafa and Slay (2015))
was released by the Cyber Range Lab of the Australian Centre for
Cybersecurity (ACCS). IT contains a mixture of real normal traffic and
synthetic attack traffic. The data set contains 1,623,118 NetFlows, with
95.54% normal and 4.46% attack NetFlows.

Given that benchmark data sets comprise millions of NetFlows,
obtaining a complete data distribution of the real data source, as well
as fully understanding a complex generator model and its distribution,
is not straightforward. Therefore, similarity metrics will be evaluated
based on samples of 10,000 data points (NetFlow entries). In our setup,
30 subsets of 10,000 sampled data points will be drawn randomly from
each real data set. The similarity metrics are applied pairwise to each
sample of the real data sets. The intra data set distance evaluates the
distance of data points from a common distribution. We hypothesize
that these samples should be very similar. The inter data set distance
evaluates the distance of data points from different distributions. There-
fore, these samples are expected to be less similar to each other. The
intra and inter data set distance allows defining value ranges (upper-
and lower bounds), which can be applied in the evaluation of synthetic
data sets.

Preprocessing of data. The IF and OCSVM are used for two different
similarity metrics in our setting. First, they are applied as Discrimina-
tor, which shall distinguish two data sets from each other, e.g. synthetic
and real. Second, the Isolation Forest, OCSVM and XGBoost are used in
a task-specific setting.

The Isolation-Forest implementation from Scikit-Learn (Pedregosa
et al.,, 2011) supports numerical attributes exclusively. The NetFlow
data contain various categorical attributes that need to be transformed
into a numerical representation. An overview of the attributes, data
types, and encoding styles is given in Table 5. The encoding style X
indicates that this attribute is not considered in the encoded data. While
some attributes like labels can be transformed via one-hot encoding,
others like IP addresses require a different approach. The use of a
one-hot encoding for attributes with many unique categorical values
would result in large sparse vectors. Ring et al. (2018) suggest encoding
IPs and ports in a binary vector, where each digit is a single vector
dimension. This approach is applied in our benchmark, since it requires
no prior training of embeddings, but features more dense vectors than
one-hot encoding. The numerical attributes like duration, bytes, and
packets are binned and one-hot encoded afterward.

6.2. Validation on real data results

In this section, we demonstrate that the selected metrics effec-
tively distinguish samples from different NetFlow data sets. In order
to analyze the metrics and their interconnections further, the Pear-
son correlation among the samples of all data sets are analyzed. The
heatmap in Fig. 4 depicts the Pearson Correlations between the differ-
ent metrics. The plot shows a correlation between data-specific metrics
or domain-specific metrics.
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Fig. 3. A structured overview of benchmarking process. We obtain baseline distance values for intra data set scores (green) and inter data set scores (yellow) for reference of the
synthetic data set scores (blue). The intra data set scores are calculated from samples of the same data distribution. The inter data set scores are calculated by using samples from
the target data set X and samples from another NetFlow data set Y. The synthetic data set scores are calculated by using samples from the training data set X and samples of
generated data . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5

The NetFlow V1 attributes with data types and encoding style.
Attribute Data type Encoding
IPV4_SRC_ADDR Categorical Split + binarize
L4 SRC_PORT Categorical Binarize
IPV4_DST_ADDR Categorical Split + binarize
L4 DST PORT Categorical Binarize
PROTOCOL Categorical One-hot
L7_PROTO Categorical X
IN_BYTES Numerical Bin + one-hot
OUT_BYTES Numerical Bin + one-hot
IN_PKTS Numerical Bin + one-hot
OUT_PKTS Numerical Bin + one-hot
TCP_FLAGS Numerical Binarize
FLOW_DURATION_MILLISEC. Numerical Bin + one-hot
Label Categorical Original value
Attack Categorical X

There is greater correlation in general in the area of data metrics
(JSD Mean - OCSVM Discriminator), which shows a coherence among
the data driven similarity measures. The domain-based metrics do not
show a general correlation among all metrics, especially the IF-Task
and the OCSVM-Task show differences towards the TSTR and the TRTS
setting, which highlights the significance to incorporate both metrics.
The XGBoost task metrics show a stronger correlation towards the
data-driven metrics than the domain-driven metrics.

The correlation analysis of the metrics show some correlation be-
tween metrics and unrelated metrics as well, which emphasizes the
application of multiple metrics to assess the data similarity in a whole-
some manner.

The box plots of the Data Dissimilarity Score Fig. 5(a) and the
Domain Dissimilarity Score Fig. 5(b) show the mean values of all
metrics across all data set samples used in our benchmark. All metrics
are in the interval of [0, 1] and most metrics follow the rule of “lower
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value is better” except the F1-Score which is adapted by calculating
1 — F1-Score. The plots show that the average metrics for the data-
based and domain-based metrics are able to differentiate between
data sets, with little distributional variance for each pairwise data set
comparison.

Interestingly, the Data Dissimilarity and the Domain Dissimilarity
indicate a greater separation of the TI data set in comparison to the CC
and UN.

The application of the metrics to real NetFlow samples demon-
strates that these metrics can effectively distinguish samples from
different sources. Consequently, these metrics are validated as an ef-
fective method for determining the similarity between samples as they
can be used to assess the capability of a generator in creating data
that ranges from perfectly resembling a given target distribution (the
lower bound) to still representing valid NetFlow data from a potentially
different target distribution (upper bound of acceptable data quality)
detailed in the following section.

7. Case study: Benchmarking of synthetic data

After evaluation the general application of the similarity metrics
on real data, we apply them for the evaluation of synthetic data in
this section. The general setup including the data sets and the data
preprocessing is identical to the previous section. At first, we describe
the two generative models WGAN and GPT-2 which we use to generate
synthetic NetFlow data. Second, we apply the data and domain dissim-
ilarity and apply it to the generated data. Since the pure dissimilarity
metric values are hard to interpret, we use the results from the real
data set samples from the pre-study to define upper and lower bounds
of the value. The lower bound consist of metric values calculated from
samples of the target data set exclusively (intra data dissimilarity).
Synthetic samples close to these values can be considered as a good
proxy of the target data set. The upper bound consist of metric values
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Fig. 5. Distributions of the data and domain dissimilarity pairwise grouped by data
sets: NF-CSE-CIC-IDS2018 = CC, NF-ToN-IoT = TI, NF-UNSW-NB15 = UN.

calculated from metric values between samples from the target data set
and samples from other NetFlow data set (inter data set dissimilarity).
Synthetic samples close to this bound are considered to be NetFlows in
a general sense, but they are a less good proxy for the target data.

7.1. Generator models

WGAN. The WGAN model cannot process categorical information,
which requires the encoding of categorical values into numerical rep-
resentations. Our work adopts the binary encoding from Ring et al.
(2018), but in contrast to the original scheme, where the protocol is
one-hot encoded, we encode the protocol in the style of binary encoding
as well because our data contain more than the three protocols UDP,
TCP and ICMP, e.g. OSPFIGP, SCTP and others. Moreover, we also
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generate value encoded labels, where 0 indicates normal traffic and 1
indicates attacks.

GPT-2. In our setting, the model is trained with NetFlow data in the
format of comma-separated values (csv) as raw-text input. Afterward,
the generated data are filtered, where structurally wrong NetFlows
are removed. Structurally incorrect NetFlows include entries with an
incorrect number of features, such as too few or too many commas per
line or completely empty lines that are unusable for further analysis.

7.2. Benchmarking of synthetic data results

In the following, we present a case study to show how our proposed
evaluation framework can be applied to evaluate synthetically gener-
ated NetFlow data. In this section, the Data and Domain Dissimilarity
are applied to the synthetic NetFlows that are generated by GPT-2 and
WGAN-binary every 500 training steps, to evaluate the training process
of each model. The output data of the generative models are subject
to various degrees of freedom, e.g. some generate numerical vectors
which are transformed to NetFlows and other models generate raw
(structured) text. Due to the different output forms, the output is not
necessarily structured in a valid NetFlow syntax. Syntax checks serve
as a filter for the synthetic data, ensuring that only plausible NetFlow
values are considered and that the encoding scheme, e.g. for machine
learning models, is appropriately applied. Additionally, numeric fea-
tures, e.g. the number of bytes or packets, need to be checked, since
only numerical values can be evaluated correctly by certain similarity
metrics like the Pearson correlation coefficient.

The plots in Fig. 6 show the training history of the models evaluated
via the Data Dissimilarity Score and Domain Dissimilarity Score for the
three data sets in our experiments. The scores alone would be difficult
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Fig. 6. Dissimilarity metrics for every 500 training steps, comparing different dissimilarity scores (rows) per synthetic data set and model (columns); score values for the synthetic
data sample (y-axis) for every training step sample (x-axis). The highlighted areas, show the intra data set similarity in light-green and green The inter data similarity is highlighted
in light yellow and yellow. The value ranges of light colored yellow and green areas indicate the range of the minimum and the maximum values of real data set comparisons,
borders are indicated via dotted lines. The darker yellow and green areas indicate the 25% and the 75% quantiles of the distributions and are separated via dashed lines. The

median value is indicated by a continuous line .

to interpret, as a viewer might not understand whether the underlying
absolute similarity value is favorable or unfavorable. Essentially, it
is unclear whether the value, though different, still represents valid
data similar to the original. Based on the application of the metrics
to the real data set, we add baseline values for reference as upper and
lower bounds: The intra data set scores are based on samples of the
target data set exclusively and therefore reflect the scores of data from
the same target distribution. Inter data set scores are calculated from
samples originating from different data sets. Although these data sets
are generally similar, such as both being real NetFlow data, the samples
may not exhibit similar behaviors or accurately represent the same
target distribution. There are highlighted value ranges in Fig. 6, to show
the intra data set similarity in light-green and green, and the inter data
similarity in light yellow and yellow. The value ranges of light-colored
variants indicate the range of the minimum and the maximum values
across the real data set comparisons, and the borders are indicated
via dotted lines. The darker variants of green and yellow indicate the
25% and the 75% quantiles of the distributions and are indicated via
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(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

dashed lines. The median value of the distributions is represented by a
continuous line.

The plots indicate a more stable training behavior of the GPT-2
model, where the model’s data are well-fitted at 1000 training steps and
do not show significant improvement afterward. The Data Dissimilarity
Score in the first row shows that the generative models are able to
generate data with a low dissimilarity score, where the score value is
close to the intra data distribution (green area). The Domain Similarity
Score in the second row demonstrates that the application of the
synthetic data resembles scores close to the inter data set distributions
(yellow area) rather than the intra data set distributions for the NF-CSE-
CIC2018 and the NF-UNSW-NB15. The synthetic NF-ToN-IoT shows
dissimilarity scores between the inter and intra data set baselines. Al-
though the data successfully capture NetFlow properties (yellow area)
suitable for training general anomaly detection systems, it appears to
lack characteristics unique to the target data set (green area). This
suggests that the generative models capture data driven properties of
the training data well and can therefore be used as proxy data in
terms of data driven properties. The generated data show differences
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when they are applied in their domain e.g. in anomaly detection tasks
in comparison to the original training data, which means that the
generated data cannot be regarded as ideal proxy data for the original
training data in terms of domain application.

Overall, the plots demonstrate the importance of specific data and
domain measures to evaluate synthetic data in a comprehensive way.
Although the models effectively capture and replicate the distribu-
tions of the training data, utilizing the generated data in practical
applications reveals a different outcome. Our findings show that data
with similar distributions do not necessarily excel in domain-specific
applications. The Data Dissimilarity shows that almost all models fit
the target data well and achieve scores similar to the target distribution
during the training process. The Domain Dissimilarity Scores indicate
that both models produce data that behave differently from the tar-
get data in domain-specific applications, without visible improvement
throughout the training process. This underscores the necessity to em-
ploy both evaluation perspectives for a comprehensive benchmarking
procedure.

8. Conclusion

The objective of this work was to close the gap of a missing
standardized evaluation setup for synthetically generated NetFlow data
from machine learning models such as WGAN and GPT-2. In this
work, we therefore presented a standardized benchmark framework
for synthetic NetFlow data evaluation. Initially, we compiled a range
of similarity metrics from the literature. Then, we selected metrics
specifically designed to assess different aspects of similarity, focusing
on both data and domain-based similarities. To validate the metrics,
their values were calculated using 90 subsets derived from three real-
world data sets. The results demonstrate that the selected metrics are
sensitive to the data set, emphasizing their appropriateness as bounds
for a differentiated evaluation. Lastly, the benchmarking of synthetic
data samples was carried out as a case study by using the inter- and
intra-similarity scores from the real-world data sets as upper and lower
bounds. Utilizing publicly available benchmark data sets allows the
similarity ranges of these data sets to serve as benchmark values for
evaluating future generators trained on the same data sets.

In general, combining data-specific and domain-specific metrics
offers a comprehensive approach to evaluate not only the distributional
properties, but also the practical applicability of generated data with
various metrics to better reflect the diverse characteristics of data sets.
The Data and Domain Dissimilarity scores enable the quantification
of data quality from synthetic generation through objective numeric
values and facilitate a model-agnostic assessment of data quality. The
proposed line plots serve as an intuitive way to visualize the evaluation
results in a compact format by indicating reasonable ranges of the
target data set and NetFlow data in general.

By publicly releasing our benchmark framework and benchmark
data,”> we aim to contribute to the establishment of a more standardized
and comparable evaluation of real-world and synthetic NetFlow data
sets and associated generative models.

For future work, we plan to further enhance this framework by
incorporating additional metrics and applying it to a broader range of
data sets and generative models.

9. Advantages and limitations

Our proposed framework for benchmarking synthetic data has sev-
eral benefits, but is also subject to limitations which must be consid-
ered. Aggregating multiple metrics into two distinct categories, data-
driven and domain-driven, enables quicker comparisons of data gener-
ation approaches by reducing the analysis from 14 individual metrics to

2 https://github.com/maxwolf-code/netflow_data_similarity_framework.
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two composite metrics. These scores, the data dissimilarity and domain
dissimilarity, can serve as numerical objectives for optimizing deep
learning models, particularly through hyperparameter tuning. Finally,
we would like to refer to the system performance, in particular the
runtime for calculating the Data and Domain Dissimilarity Scores.
The framework requires about 3 min to calculate the dissimilarity
metrics of two samples (10,000 NetFlows each) on a device with the
following specifications: 11th Gen Intel(R) Core(TM) i7-1165G7 featur-
ing 2.80 GHz and 32,0 GB RAM. The low performance requirements
enable researches to apply the evaluation framework directly on low
spec machines like laptops, which emphasizes the accessibility of the
framework.

Currently, the proposed setup has some limitations that need to be
considered. First, our approach requires evaluations with sample sizes
of at least 10,000 data points, which may not always be available, par-
ticularly for generating rare events of specific attacks where only a few
thousand NetFlows exist. Second, duplicates of original NetFlow that
are part of the generated data are not considered directly, which can
be addressed by incorporating suitable memorization metrics. Third,
although the NetFlow features used in this case study are common
in most public data sets, additional features available from NetFlow
exporters are not yet included in our benchmark framework. Moreover,
the domain-specific metrics in our setup are tailored to NetFlow data
only. While data-driven metrics can be universally applied to other do-
mains as well, domain-specific metrics, such as syntax checks, require
adaptation when applied to different data domains.
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Appendix. Netflow data samples

This subsection lists example NetFlow samples from the NF-CSE-
CIC-IDS2018 data set for visual comparison of real and generated data.
Real data samples from the original data set are displayed in Table A.6.
Synthetic data samples from GPT-2 are in Table A.7, samples from the
WGAN are in Table A.8.
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Table A.6

Real NetFlow data sampled from NF-CSE-CIC-IDS2018.
SRC_ADDR SRC_PT DST_ADDR DST_PT PROTO. IBY O_BY IPK O_PK FLAGS DUR. Label
172.31.69.25 21 18.221.219.4 60538 6 40 0 1 0 20 0 0
172.31.65.78 50821 169.254.169.254 80 6 360 455 5 5 219 4294966 0
77.72.82.96 57701 172.31.69.24 7073 6 40 0 1 0 2 0 0
172.31.68.21 54424 172.31.0.2 53 17 209 326 3 3 0 0 0
172.31.66.54 51451 172.31.0.2 53 17 62 126 1 1 0 4294966 0
172.31.69.6 52500 18.219.211.138 8080 6 538 341 5 5 219 4294955 1
172.31.69.24 49910 172.31.69.16 55600 6 44 0 1 0 2 0 0
172.31.64.35 49282 172.31.0.2 53 17 150 270 2 2 0 4294936 0
172.31.65.59 60555 172.31.0.2 53 17 71 87 1 1 0 4294966 0
172.31.64.51 64092 172.31.0.2 53 17 62 270 1 1 0 4294964 0

Table A.7

Synthetic NetFlow data based on NF-CSE-CIC-IDS2018 from GPT-2 after 10,000 training iterations.

SRC_ADDR SRC_PT DST_ADDR DST_PT PROTO. IBY O_BY I.PK O_PK FLAGS DUR. Label
172.31.65.43 65111 172.31.0.2 53 17 136 334 2 2 0 4294927 0
172.31.65.43 49362 172.31.0.2 53 17 70 86 1 1 0 4294967 0
5.101.40.43 61297 172.31.65.43 3389 6 1460 1873 8 7 222 4293292 0
172.31.65.43 50965 54.240.190.208 443 6 126 126 2 2 24 4294889 0
212.92.116.36 62196 172.31.67.41 3389 6 1380 1721 8 7 222 4292999 0
5.101.40.105 58950 172.31.67.41 3389 6 1364 1721 8 7 222 4293293 0
212.92.116.36 62180 172.31.67.41 3389 6 1380 1721 8 7 222 4292870 0
172.31.65.43 49671 52.165.231.192 443 6 154 166 2 1 24 4294889 1
37.46.246.28 56 249 172.31.65.43 3389 6 1592 3086 11 8 30 4291872 0
165.132.169.106 63880 172.31.65.43 3389 6 215 92 4 2 30 4284607 0

Table A.8

Synthetic NetFlow data based on NF-CSE-CIC-IDS2018 from WGAN after 10,000 training iterations.

SRC_ADDR SRC_PT DST_ADDR DST_ PT PROTO. 1BY O_BY I PK O_PK FLAGS DUR. Label
60.23.201.202 59732 172.31.67.13 3389 6 168 0 0 2 22 3847352 0
172.31.64.37 49262 172.31.0.2 37 17 17 134 0 3 0 4294967 0
81.68.232.171 64832 172.31.67.45 3357 6 1508 2041 12 15 223 4290608 0
172.31.65.39 51322 172.31.0.2 37 17 120 134 0 2 0 4294966 0
172.31.66.37 49418 195.236.236.249 345 6 21 184 5 17 155 2531948 0
172.31.66.53 50619 209.240.252.235 4600 6 7 281 1 17 157 2126444 0
172.31.65.55 49863 172.21.0.2 177 16 71 255 0 3 0 4291810 0
172.23.65.198 63612 172.31.64.6 53 17 124 134 0 2 0 4294967 0
172.31.64.37 49230 172.159.192.10 33 4 21 0 1 3 0 4269598 0
16.68.217.202 63829 172.31.67.13 3389 6 1516 1881 8 6 94 4293868 0
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