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ABSTRACT
Malicious manipulations on Industrial Control Systems (ICSs) en-
danger critical infrastructures, causing unprecedented losses. State-
of-the-art research in the discovery and exploitation of vulnerability
typically assumes full visibility and control of the industrial process,
which in real-world scenarios is unrealistic. In this work, we inves-
tigate the possibility of an automated end-to-end attack for an un-
known control process in the constrained scenario of infecting just
one industrial computer. We create databases of human-machine
interface images, and Programmable Logic Controller (PLC) bina-
ries using publicly available resources to train machine-learning
models for modular and granular fingerprinting of the ICS sectors
and the processes, respectively. We then explore control-theoretic
attacks on the process leveraging common/ubiquitous control algo-
rithm modules like Proportional Integral Derivative blocks using a
PLC binary reverse-engineering tool, causing stable or oscillatory
deviations within the operational limits of the plant. We package
the automated attack and evaluate it against a benchmark chemical
process, demonstrating the feasibility of advanced attacks even in
constrained scenarios.

CCS CONCEPTS
• Security and privacy → Systems security.

KEYWORDS
Industrial control systems security, Machine learning, Fingerprint-
ing, process-aware attacks
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1 INTRODUCTION
Industrial Control Systems (ICS) are used to monitor and man-
age/control physical processes. ICS are often deployed in Critical
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Infrastructures (CIs) such as nuclear power plants, chemical plants,
wastewater treatment facilities, critical manufacturing, transporta-
tion systems, etc. These systems serve wide populations and are
closely connected to everyday life. Attacks on ICS have scalable con-
sequences and can lead to severe financial losses caused by down-
time or physical damages, and can also even lead to human fatalities
[43]. The effect of ICS attacks has been heavily researched/proven
by academia and repeatedly seen in real-life attacks. Most promi-
nently, Stuxnet [12], an attack that targeted an air-gapped nu-
clear/chemical plant, caused substantial production issues from
damaged equipment while the alarm thresholds remained unaware
of the infection. Similarly, the energy sector has also been attacked,
the Ukraine blackouts being the prime example [28]. The Wan-
naCry ransomware affected ICS, causing extended downtime and
financial losses [6]. The latest incident was an attack on the Schnei-
der Electric Triconex safety instrumented system affecting a major
facility in the Middle East [11].

In the past, ICS environments were considered “secure” from
attacks originating from cyberspace because the devices in these
environments were air-gapped [7]. With the prospect of improved
efficiency and better economics, ICS environments started to con-
nect to corporate networks and the internet. This exposed ICS
environments to a plethora of cyber-attacks [20]. At the same time,
to reduce development and maintenance costs, vendors are increas-
ingly opting for the use of more Commercial Of The Shelf (COTS)
components for industrial devices [47]. General purpose computers,
for example, host many ICS components such as Human Machine
Interfaces (HMIs) and Engineering workstations that interact di-
rectly with Programmable Logic Controllers (PLCs)[43]. Therefore,
malware affecting commercial microprocessor-based devices can
be seamlessly ported to industrial environments. Regular patching,
however, is extremely challenging in industrial settings due to the
needed downtime, which in many cases could be unacceptable. Fur-
thermore, industrial devices have a lifespan of many decades. This
results in a substantial portion of these industrial processes to be
based on legacy or deprecated devices, keeping ICS environments
exposed to known vulnerabilities even after patches are released.

Although the term “ICS” is used as an umbrella term for systems
spanning many sectors, each has its own customized deployment.
State-of-the-art literature on ICS vulnerability discovery and deploy-
ment have focused on attacks that assume complete or high observ-
ability of the target [22, 25, 46]. Although these attacks provide in-
sight into the consequences of plant-wide malicious manipulations
of control and sensor data, they do not reflect realistic challenges
and scenarios. A more dangerous class of attacks is process-aware
attacks, which are operationally stealthy, customized, and result in
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calculated damages [44]. To design these attacks, a sector-specific
analysis has to be carried out.

In all of these approaches of security assessment of ICS, three
important considerations are missing: 1) Most attacks assume full
visibility of industrial systems or assume complete controllability
of at least one type of device (for example, all the controllers in the
plant), 2) There is minimal discussion on automation for reconnais-
sance, attack launch, and attack sustenance phases and 3) There
is a scarcity of generic attack vectors applicable to a variety of
sectors. The diverse nature of ICS inherently limits the creation of a
generic framework for its security evaluation, but we leverage the
similarities amongst ICS sectors, processes, and common control
algorithms to overcome these limitations and identify boundaries
of dynamic attacks. In our investigated scenarios, we consider an
attack with constrained access to the industrial plant. Our attack
generation begins at a single HMIWindows-based computer, which
can be reached by traditional malware. We propose a methodology
of automated reconnaissance and attack development, where the
adversary can cause stealthy process-aware attacks. We summarize
our major contributions as follows:
• ICS sector fingerprinting using HMI screenshots: We con-
structed a database of publicly available images of HMIs and
trained machine-learning models that can classify an HMI screen-
shot to be part of a certain ICS sector, thus successfully identify-
ing the industrial sector.

• ICS process fingerprinting using ICS binaries: Once the in-
dustrial sector is identified, the specific target process must be
fingerprinted. We use a database of publicly available ICS bina-
ries to train machine-learning models to identify the specific
process they control within that sector.

• Generic methodology of designing perturbation-based at-
tacks: Given a constrained attacker with partial visibility of the
process; we leverage control theory to design attacks that can be
controlled in behavior. These generic attacks target any system
that uses the widely used PID controllers while remaining within
operational points, driving the plants into sub-optimal states.

• End-to-end case study: We develop an end-to-end demonstra-
tion in Tennessee-Eastman, a benchmark chemical process, and
present the feasibility of the presented attacks.
After positioning our work in relation to the state-of-the-art in

Section 2, the rest of the paper is structured as follows:
• I came (Section 3): Describes our threat model and our assump-

tions about the attacker capabilities and entry points.
• I saw (Section 4): Describes our fingerprinting methodology
based on images captured from the HMI, as well as binaries
extracted from the PLCs.

• I hacked (Section 5): Describes a generic, control-theoretic
methodology for developing process-aware attacks assuming
limited visibility in the process.
The end-to-end case study is presented in Section 6, followed by

discussion of related defenses in Section 7.

2 RELATEDWORK
To the best of our knowledge, automated reconnaissance using
HMI images, and PLC binaries has not been explored in the litera-
ture. Analysis of PLC source code [48] and binaries has focused on

disassembly, decompilation, finding vulnerabilities, ensuring the
safety of critical code, payload design, and general-purpose recon-
naissance of controllers. PLC infections can be identified from the
analysis of PLC source code, ensuring the security of safety-critical
code [49]. For payload generation, SABOT [33] gathers intelligence
from source code analysis to automatically understand what kind
of code manipulations would lead to attack goals being fulfilled. IC-
SREF [21] is an open-source framework that allows general purpose
PLC binary analysis. In all of these approaches, PLC code analysis
has not been used to fingerprint a particular process.

Table 1 summarizes the state-of-the-art process-aware attacks
and countermeasures for various ICS sectors. While there are many
sector-specific attacks for Energy [19, 23, 29], Water [1, 2, 17, 25,
31, 35], and Chemical [8, 22, 26, 46] sectors, research on generic
payload generation [17, 32, 33] is the closest to our work. We differ
from ladder logic, bombs [17] in the impact of our attack vector:
We cause specific sustainable manipulations whereas it focuses on
random manipulations. [32, 33] are more generic because they try
to dynamically perform reconnaissance while designing payload
but both of them have limitations in scope: [33] only operates on
a specific language for PLC programming, Instruction List, which
has been deprecated since 2012 and [32] gives a very high-level
discussion on how to perform attacks on Boolean type instructions.
From the table, we also see there is a scarcity of research on attacks
which are generic and have a single entry point. Finally, [8, 31,
32, 46] discuss attacks that cause damage while remaining within
the operational limits, but none of these attacks enumerate the
generic steps for launching PLC-based stealthy attack which is not
dependent on any PLC language.

ICS environments have also been exposed to real-world attacks.
Stuxnet targeted the PLCs that controlled the centrifuges of a nu-
clear plant, subsequently alternating their frequency between pre-
configured high and low thresholds to achieve physical destruc-
tion [12]. The attackers also remained stealthy by spoofing the
sensor data that connects to the SCADA to report normal operation.
[28] describes the attack on the Ukrainian power grid, where the
adversaries used HMIs in the SCADA system to open the circuit
breakers and malicious firmware on serial-to-ethernet devices that
ensured that remote commands from operators were disabled. The
attackers in Havex inject the target with malicious code that allows
data collection such as stealing credentials, taking screenshots and
file transfers [37]. This attack can be considered as a reconnaissance
attack. An attack on a German steel-mill is known to have infected
a controller and impacted its furnace [36]. Trisis gains access to a
Schneider Electric’s Triconex safety instrumented system (SIS) PLC
and aims to change its ladder logic [11].

We observe from the real-world attacks that an adversary may at
most infect a single device initially, differing from the academic lit-
erature which assumes extensive knowledge, visibility, and control
over the process. A real-world attack called Havex [37], is the only
known attack that assumes no knowledge of the sector/process
(rows 4,5 in Table 1), but it is only a reconnaissance malware with
no dynamic payload generation (rows 10,11,12 in Table 1).

3 THREAT MODEL
As mentioned earlier, most of the attacks in the ICS research liter-
ature either assume extensive observability and controllability of
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Work [33] [32] [46] [26] [29] [17] [31] [19] [23] [8] [1]
[2] [25] [22] [15] [12] [28] [36] [37] [11] Our

work
Real/Academic A A A A A A A A A A A A A A R R R R R A
Sector demonstrated on G G G C E W W E E C W W C E N M G E G G
Target sector knowledge ● ● G# ● ● ● ● ● ● ● ● ● ● ● ● ● ● ○ ● ○
Target process knowledge G# G# ○ G# ● ● G# ● ● ● ● ● ● ● ● ● ● ○ ● ○

Point of infection P P P, A P, A,
S S P CN,

S S CN,
P S CN,

SC, S S, A P, S,
A P GPC,

N, P
GPC,
N GPC N GPC,

P GPC

Sensors/sensing signal ○ ○ ● ● ● ○ ● ● ○ ● ● ● ● G# G# ○ ○ ○ ○ ○
Controllers/controller variables ● ● ● ● ○ ● ○ ○ ● ○ G# ○ ● ● ● ○ ● ○ ● ●
Actuators actuating signals ○ ○ ● ● ● ○ ○ ○ ○ ○ ● ● ● G# ○ ○ ○ ○ ○ ○
Attacker defined specification ● ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ● ○ ○ ● ○ ○ ○ ● ○
Exhaustive vulnerability study ○ ○ G# ● ● ○ ○ ● ○ ● ● ○ ● ● ○ ○ ○ ○ ○ ●
Undirected attacks ○ ○ ○ ○ ○ ● ● ○ ● ○ ○ ○ ○ ○ ○ ○ ● ○ ○ ○
Feasibility of stealthy attacks:
compromised component ○ ●:A ●:A ○ ○ ○ ●:S ○ ●:S G#:S G#:S G#:S G#:S,

A ○ ○ ○ ○ ○ ○ ●:P

Table 1: Summary of real-world and academic process-aware attacks. We denote the ICS sectors by W: Water, C: Chemical,
E: Energy, N: Nuclear sectors, and G: to represent generic attacks that are not specific to any sector. To denote compromised
components, we use P: PLCs, A: Actuators, S: Sensors, N: enterprise Network, CN: Control Network, and GPC: General Purpose
Computer. Cyan rows (rows: 4,5): pre-infection knowledge required by the attacker to launch the attack. Gray rows (rows:
7,8,9): the degree of plant visibility assumed in the attack for launch or evaluation. Red rows (rows: 10,11,12): the type of
attacks performed in the work. ● represents the completeness of the parameter used in the table.

Figure 1: A typical ICS layout [43].
the entire process and/or assume extremely detailed knowledge of
the plant while crafting attack vectors. In contrast, for our threat
model, we make the following assumptions:
• The attacker has no prior knowledge of the ICS;
• The attacker can reach and execute a program on an HMI;
• The HMI connects to a PLC and its binary can be extracted.

The first assumption is the difference of our work to all related
work. In our threat model, the attacker has no knowledge about
the process and tries to extract as much as possible automatically.

The second assumption is based on real-world attacks where
the attackers used traditional techniques to control a Windows
machine. Through some entry vector, such as infected USBs, social
engineering, or (spear) phishing, etc., a piece of malware enters the
enterprise network and moves laterally, infecting other Windows
machines. The Ukraine power grid attack [28] reached the HMI
controlling the circuit breakers by stealing the VPN credentials of
the substation engineers through social engineering.

The third assumption is required for delivering a process-aware
attack using dynamically acquired knowledge. Without it, our at-
tack stays at the reconnaissance stage only. An HMI, however, is
designed to give commands and receive data from PLCs, so a net-
work path to PLCs certainly exists. A simple Nmap prioritizing

known industrial protocols/ports is sufficient to identify potential
targets, followed by a connection to the PLC. Modern PLCs use FTP
for file transfer and very frequently allow anonymous access or use
default passwords. This can be used to download PLC binaries.

Supervisory Control And Data Acquisition (SCADA) which mon-
itors and controls all components has complete observability of the
plant (See Fig. 1) and infecting the computer hosting SCADA is
the best-case scenario for an adversary. However, we also consider
plants with decentralized systems hosting several HMIs; the at-
tacker in this scenario will have less visibility if only one computer
hosting one HMI is infected. The HMIs may monitor a subset of
devices in the plant rather than the entire plant. We thus explore the
possibility of developing and delivering attacks given such limited
visibility to the process. We emphasize that our constrained threat
model aims to investigate the requirements and possibilities for an
attacker to successfully launch an attack in this scenario.

Essentially we aim to launch process-aware attacks: These at-
tacks are advanced because they collect intelligence to build the
final attack vector but do not act to achieve quick financial gains
or cause volatile attacks. Instead, the payloads weigh the capabili-
ties, look for an opportune moment, and launch the attack while
ensuring stealthiness. These characteristics require complete recon-
naissance of the target. While public information about plants [23],
device fingerprinting [14], social engineering [4] and model simu-
lation [22] may be used to gain pre-infection knowledge, this leads
to crafting manually designed target-specific attack vectors. We, on
the other hand, aim to build attack tools that can automatically gain
knowledge about the plant and can design payloads accordingly.

As discussed in Section 1, it is difficult to build a generalizable
and stealthy payload that can guarantee successful infection across
all the different ICS sectors. Therefore, we call the attacks gener-
alizable if they leverage integral components that are present in
any ICS environment. An example of such components includes
HMIs, PLCs and general purpose computers. Furthermore, we de-
fine stealthiness of the payloads from the process point of view,
since random changes in process variables may trigger very simple
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Figure 2: A subset of our constructed dataset. Each row de-
picts images from the same sector: Chemical sector, Energy
sector, and Water sector respectively. The images depict the
sharp differences between images belonging to the same sec-
tor (along the row) and similarities between images belong-
ing to different sectors (along the column).

threshold-based alarms. Still, experimental results in Section 4.3
clearly present the bounds of the dynamically developed attacks.

In summary, the attack scenario is as follows: An attacker reaches
and can execute code on a general purpose computer hosting an
HMI. Next, the code takes a screenshot of the HMI and passes it
through a pre-trained classifier (Section 4.1). The classifier performs
both image-based and extracted text-based classification. When the
ICS sector is identified, the code traverses the network to scan for
potential target PLCs. After that, when the code reaches a PLC, it
downloads the control binary from the PLC and analyzes it to clas-
sify the process controlled by that PLC. It also extracts interesting
parameters (Section 4.4). Using all the information dynamically ex-
tracted, the code can deploy one of many operationally undetectable
attacks. These can either be attacks that cause stable perturbation
to a physical quantity resulting in non-optimal operation or at-
tacks that cause an oscillating perturbation within upper and lower
limits that result in long term physical damages to the system’s
infrastructure. Another type of attack is a ticking bomb attack that
allows the attacker to escape before the attack is deployed just by
manipulating the PLC binary using ICSREF.

4 MACHINE LEARNING-BASED
RECONNAISSANCE

To effectively attack an unknown industrial setting, we first need to
identify the ICS sector and then the specific ICS process monitored
and controlled by the HMI. For simplicity, we use the following
terms in the context of target fingerprinting:
• ICS Sector fingerprinting is the categorization of the plant

under one of the 16 Department of Homeland Security (DHS) CI
categories [34]. This gives a more generic view of the plant.

• ICS Process fingerprinting is the identification of the process
being controlled by the infected PLCs. This provides information
with more granularity.
To build knowledge, we use publicly available information (im-

ages and PLC binaries) to build machine learning models that can
efficiently fingerprint and extract data to launch process-aware
attacks post-infection. We do not attempt any manual reconnais-
sance to gain any specific information about the target. ICS sector
fingerprinting requires a more generic view of the infected plant:

Sector No. Top 3 languages
Chemical 179 English (105), Czech (7), Turkish (7)
Commercial 8 English (7), French (1)
Communications 1 English (1)
Manufacturing 2 English (2)
Dams 4 English (4)
Defense 0 -
Emergency 0 -
Energy 162 English (126), Czech (7), Turkish (3)
Financial 0 -
Food 5 English (5)
Government 0 -
Healthcare 0 -
IT 0 -
Nuclear 8 English (8)
Transportation 8 English (5), Czech (2), Slovak (1)
Water 144 English (123), Czech (9), Thai (3)

Table 2: Summary of our constructed dataset of HMI images.

HMI screenshots can provide that information in a condensed form.
Therefore, we mainly use HMI screenshots to learn more about
the ICS sector which will be further explained in subsection 4.1.
On the other hand, the code running on the infected PLC provides
information about the specific process. Thus, we choose PLC con-
trol binaries to perform ICS process fingerprinting, as explained
in subsection 4.2. We also performed process fingerprinting using
HMI screenshots and sector fingerprinting using PLC binaries and
observed limited accuracy (these results appear in the Appendix).

4.1 ICS Sector fingerprinting
Constructed dataset:Weused google_images_download python
package to automatically download 1000 images for each of the 16
critical infrastructure sectors, as defined by the US Department of
Homeland Security [34] and presented in the first column of Table
2. We further augmented the dataset (with various search strings)
using Bing (≈2k), using Flickr (≈40) and searched for ICS screen-
shots in Shodan [30] (≈20). After careful pruning, we recovered 521
useful HMI images, as summarized in Table 2. Details of dataset con-
struction appear in the Appendix. We decided to focus on Chemical,
Energy, andWater sectors for two reasons: a) Most of the real-world
attacks target these three sectors (as discussed in Section 2), and b)
Since machine learning requires large datasets for robust models,
these are the only sectors that can provide meaningful results.

We faced two contradictory challenges in building a generalized
classification model. First, training over a small dataset always has
a higher chance of overfitting in deeper and larger networks which
meant that the classifier would suffer greatly in test accuracy. And
second, the images were very diverse (beyond rotation, shear, and
zoom modifications, as seen in Fig. 2) which required a deeper net-
work for learning the intricate features. The following subsections
describe our methodology followed to design the ML models.

4.1.1 Classification based on raw HMI screenshots. We use various
DNNs using Convolutional layers (Conv), ReLU activation layers
(ReLU), Max-pooling layers (MP) and Fully Connected (FC) layers
to classify the raw HMI screenshots. To finalize our architecture,
we empirically evaluated various designs based on high accuracy
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Figure 3: HMI screenshot of a water treatment plant in
United States. The Siemens Simatic software-based SCADA
was hacked and a screenshot was posted on pastebin [9].

and low overfitting, by changing the number and type of layers,
pre-processing techniques, and overfitting countermeasures.
Selection of optimal size of images: Resizing images to smaller
dimensions may approximate the information while, bigger dimen-
sions may tamper the genuine features, and significantly increase
the training time. To find the optimal size, we built a small network
of (Conv-32,ReLU,MP) + (Conv-32,ReLU,MP) + (FC-64,ReLU) lay-
ers and called it DNN-1. Table 3 summarizes the training and test
accuracy for different image sizes. Images of size (128x128) render
best training accuracy (98.84%) while images of size (256x256) offer
slightly higher test accuracy (≈ 2% higher). However, in both cases,
we observe high evidence of overfitting from the difference be-
tween training and test accuracy and the smaller number of epochs
required to train. Larger image sizes of (512x512) are also unsuit-
able because of very low training accuracy indicating an inability
to learn features and hampering the overall efficiency of the pay-
load. Moreover, using bigger images increases computation during
training as well as evaluation. Therefore, we choose (256x256) for
further experiments to deduce the final architecture. We take two
measures to reduce overfitting- data augmentation and dropout.
Data Augmentation: Data Augmentation has been proven to be
extremely effective in forcing the model to learn robust (generic)
features. In our case, when we trained the same architecture but
without any DA, we achieved our best training and test accuracy
in just 3 iterations reflecting extreme overfitting. Some augmenta-
tion mechanisms like rotate, vertical flip, and shear are not viable
in HMI based sector identification task; therefore, we focused on
width and height shift along with zoom range obtaining the follow-
ing [training, test] accuracy. For height-shift (0.2) we achieved an
accuracy of [99%, 69.987%] in 23 epochs and for zoom (0.15), height-
shift (0.2) and width-shift (0.2), we achieved [73.35%, 60.15%]. We
found height-shift (0.1) and width-shift (0.1) to be the best trade-off
between accuracy and overfitting problems, where we achieved
[96.54%, 67.03%] in 49 epochs.
Dropout: Since dropout layer removes a percentage of neurons
during training, it reduces the co-adaptation of neurons. This pre-
vents the model from overfitting by forcing the neurons to learn
features without being dependent on other neurons. This regular-
ization method is extremely useful in preventing overfitting [42]. In
our experiments, when DNN-1 was trained for image size (256x256)
without dropout layer (DNN-2), a test accuracy of 71.021% was

Network
architecture Image size

Training
accuracy

Test
accuracy Epochs

DNN-1

128 × 128 98.84 69.12 6
256 × 256 97.80 71.52 3
512 × 512 70.35 62.13 29

DNN-2 256 × 256 98.99 71.021 15
DNN-3 256 × 256 92.79 69.221 5
DNN-4 256 × 256 91.32 67.88 95
DNN-5 256x256 99.15 80.907 51

Table 3: Experimental results for different image sizes
and architectures described in Section 4.1.1 on constructed
dataset. The number of epochs in the table represent the it-
eration at which the highest accuracy was achieved.

achieved which is almost similar to the test accuracy of DNN-1. But
using dropout layer, we were able to stabilize the training, and the
best model was achieved after learning through more number of
iterations i.e. through 15 iterations instead of 3 as for DNN1.
Transfer learning: The motivation of transfer learning is that a
sufficiently trained model is independent of the data with which it
was trained and the knowledge gained from one dataset can be used
to learn features on another dataset. The pre-trained model may fur-
ther be tuned (by training only a few layers) to cater to the particular
dataset. Before applying transfer learning, we trained two slightly
deeper networks than DNN-1 to observe the impact of deeper ar-
chitectures in successfully creating efficient models. We performed
experiments with (256x256) sized images for deeper layers: DNN-3
with architecture (Conv-32,Conv-32 ReLU, MP) + (Conv-32, ReLU,
MP) + (Conv-64, ReLU, MP) + (FC-64,ReLU) and DNN-4 with ar-
chitecture (Conv-32, ReLU, MP, Dropout) + (Conv-32, ReLU, MP,
Dropout) + (Conv-64, ReLU, MP,Dropout) + (Conv-128, ReLU, MP,
Dropout) + (FC-64,ReLU). From Table 3, we infer that the difference
between test and training accuracy lowers, and training stabilizes
with increment in the number of layers. Thus, we choose a smaller
number of trainable layers in our network with a larger number
of non-trainable layers with dropout and data-augmentation for
improving test accuracy using transfer learning. We performed ex-
periments on transfer learning with VGG16 weights available using
the Keras module for Python 3.6.5. The architecture of the final
model has the non-trainable layers of VGG16 architecture, followed
by a fully connected layer and Dropout layer (DNN-5) trained using
data-augmentation. We observed that with transfer learning, we
stabilized the training process, reduced the gap between training
and test accuracy and improved test accuracy to 80.907% from the
best test accuracy of 71.52%.
Insights: For conventional image classification problems, themodel
learns to use similarities in shapes and edges but here, the same
chemical plant HMI may be designed to represent data in different
ways (one may be visual, depicting reactors, devices, etc. and other
may depict just the sensory information). Moreover, the similarities
in colors can misguide the model into using RGB values to classify
an HMI as similarly colored images may belong to different classes
(Fig. 2). In a nutshell, the differences are more complex than ori-
entation, background, illumination, or color differences between
images which prevents high accuracy using raw HMI screenshots.

Session 14: CPS Security  ASIA CCS ’20, October 5–9, 2020, Taipei, Taiwan

748



Parameters Multinomial Naive Bayes Support Vector Machine
No. of Features Training Accuracy (%) Testing Accuracy (%) Training Accuracy (%) Testing Accuracy (%)

HMI
Text FB Strings

HMI
Text FB Strings

HMI
Text FB Strings

HMI
Text FB Strings

HMI
Text FB Strings

100 30 500 75.70 84 82.30 70.21 70.58 80 80.30 90.90 91.17 77.6 76 73.33
1000 35 1000 87.46 84.85 85.29 84.04 76 80 88.74 90.09 91.18 75.53 76.47 73.33
1500 40 1500 87.79 81.82 85.30 81.91 76.50 80 90.02 93.9 97.05 75.53 82.35 73.33
2000 45 2000 89.76 84.85 88.23 80.91 82.35 80 91.04 93.93 97.05 75.53 82.35 73.33
Feature Selection Statistic
𝜒
2 85.67 84.83 97.1 82.97 82.23 80 87.72 93.9 97 79.78 82.35 73.33

Mutual Information 87.46 84.85 82.30 84.04 82.35 80 88.74 93.93 97.05 75.53 82.35 73.33
F_score 86.18 84.8 76.5 80.85 80.23 80 89.25 93.9 79.41 74.46 82.4 73.33

Table 4: Experimental results for different number of features and feature selection statistic for SVM and MNB models for
HMI text-based, FB-based and Strings-basedclassification. The first section of the table gives details for selection of number
of features. Second part of the table depicts the experiments for feature selection statistic.

4.1.2 Classification based on text from HMI screenshots. Manual
inspection of the screenshots reveals that many HMIs provide an in-
terface for the data collected from the field devices (e.g., temperature
values) without distinct diagrams to illustrate the measurements
(example: Fig. 3). Thus, learning algorithms suffer in accuracy when
learning from strictly pixel-based features. We tune the parameters
for a Support Vector Machine (SVM) model and Multinomial Naive
Bayes (MNB) model on text recovered through Optical Character
Recognition (OCR) to finalize the ML parameters for text-based
classification and summarize the results in Table 4 (Col:“HMI Text”).
Cleaning strings: In our dataset, more than 70% of the images
contain English text strings with Czech, Turkish, and Thai being the
other popular languages. Translating them sometimes did not yield
legible words or combination of letters, especially accents. Thus,
we removed any character that was not a letter. We also removed
digits because they did not provide any useful information about
the sector to which a particular HMI belonged. For text extraction
and translation, we use Google Cloud Vision API.
Feature selection:We first use Mutual Information (MI) as a statis-
tic on both models to find the optimal number of features while
being careful to avoid overfitting. Then, we used 𝜒2 statistic, and
F-score to find the best correlation between target labels and fea-
tures using SVM. From Table 4 we see 𝜒2 statistic (test accuracy:
79.78%) and MI (test accuracy: 75.53%) perform better than F-score
(test accuracy: 74.46%) with 𝜒2 statistic being slightly better in test
accuracy. We observe that choosing the top 1000 features from high
mutual information with MNB gives the best result (test accuracy:
84.04% and low overfitting).
Model Selection: We experimented with two models, MNB and
SVM with linear kernels because both the models are extensively
used for text-based classification like sentiment analysis or spam
detection [24]. We reduce the impact of overfitting by K-fold cross-
validation using 5 folds and we observe that the test accuracy for
MNB is higher in all the experiments as compared to SVM. There-
fore, we select MNB with mutual information statistic to select the
top 1000 features as the final model.
Insights:We investigated the top features out of total 7592 features
related to our text-based model and listed the top features in Table 5.
Manual inspection of top features reveals that while some features
like ‘water’ for the Water sector, ‘kw’ (kilowatts) for the Energy

sector and ‘reactor’ for the Chemical sector are intuitive, there are
some features that create confusion like ‘fit’ for the Water sector.

4.1.3 Combined classification model for ICS sector identification.
To further improve accuracy, we make our own classification model
that leverages the features learned from raw screenshots as well
as from the text strings extracted from them. We propose a paral-
lel classification model where the text-based classification model
works in conjunction with the pixel-based classification model. Fig.
4 shows the parallel architecture we use in our classification model.
In this model, an HMI screenshot is run through the image classifi-
cation, and a class is predicted with a probability of that screenshot
being in that class. In parallel, the image is also run through an
Optical Character Recognition (OCR), and text strings are extracted.
The text strings are translated if they are in any language other than
English. The strings are then cleaned, and the important features
are extracted. MNB used in our model then classifies the screenshot
with a prediction probability. We then compare the prediction prob-
abilities and choose the sub-model whose prediction probability
is higher. We choose the classification scheme based on predic-
tion probability because it is a reflection of the confidence level of
prediction from each model. Thus, having a parallel architecture
ensures a more accurate prediction. We performed experiments
and the test accuracy increased to 88.29% from 80.907%, if using
only image-based classification (Table 3) or from 84.04%, if using
only text-based classification (Table 4).

4.2 ICS Process fingerprinting
As explained before, an ICS environment in any sector is comprised
of control processes. Chemical plants (a sector), for example, involve
the control of flow of chemicals, temperature in mixers, pressure in
pipes, etc. Each of these processes is typically controlled by a PLC.
To attack the system meaningfully, we have to target the right PLC
by fingerprinting the selected process.

PLCs use programming languages with both textual and graph-
ical representations, such as ladder diagrams, structured text, in-
struction list, function block diagrams, and sequential function
charts (as described in IEC 61131-3 standard). Engineering work-
stations run an integrated development environment (for example,
Codesys) that is used to compile the control code into binary format
and download it to the PLC. We leverage these control binaries

Session 14: CPS Security  ASIA CCS ’20, October 5–9, 2020, Taipei, Taiwan

749



Figure 4: Parallel architecture of the final classifier to fingerprint an ICS sector based on an HMI screenshot.

Sector Top features
Chemical reactor, gal, kg, kv, kw, man, mw, pav, power, sp
Energy cb, kv, kva, kvar, kw, mvar, mw, pf, power, sel
Water pump, cw, water, fit, flow, hr, kv, kw, mw, sludge
Table 5: Top features for HMI text-based classification.

Sector Binaries Top 3 languages
Chemical 18 German(7), English(5), French(3)
Energy 19 German(7), English(6), Cezch(2),
Transportation 6 German(2), English(2), Polish(1),
Water 9 German(2), English(2), Polish(2)

Table 6: Description of the control binaries dataset.
to evaluate their efficiency in classifying the sector that the PLC
belongs to and the process running on our target PLC. Specifically,
we extract two pieces of information: 1) The Function Blocks (FBs)
(Section 4.2.1), and 2) The ASCII strings (Section 4.2.2). FBs resem-
ble functions in imperative programming languages. They are used
as black boxes for frequently reoccurring processes, such as control
algorithms (PID, Integral, Derivative), timing functions (triggers,
timers), and networking functions (MODBUS, TCP) [21]. Extracting
FBs from binaries can provide rich semantic information about the
process. The strings in a binary are dynamic and include descriptive
error messages, input/output prompts, or other information that
might be used to identify the process of the PLC.
Constructed dataset: In order to extract FBs from the binaries,
we use ICSREF [21]. ICSREF, at its current version (1.0), works only
with Codesys v2.3 binaries. Since PLCs control processes are part
of the critical infrastructure, real binaries are not easily accessible.
Therefore, we turned to publicly available binaries and obtained
69 control binaries without crossing the line of legality. 52 out of
the 69 contained useful information and we were able to catego-
rize the binaries into 4 sectors (Chemical, Energy, Transportation,
and Water and wastewater management) and 3 control processes
(pressure, temperature, and time controls) as seen in Tables 6 and
7, respectively. We used these processes as a proof-of-concept to
train and test our machine learning model. To avoid the pitfalls of a
small dataset, we ensure diversity in both the training and testing.
4.2.1 Classification based on PLC Function Blocks. Cleaning FB
names: After automatically extracting the FB names, individually,
we had to cleanse the dataset. ICSREF is equipped with a func-
tion called hashmatch that extracts the FBs in PLC binaries, hashes
them to create a signature and then matches them to a built-in
library [21]. This function also provides the relative address at
which the FB is located. The first stage of data cleaning is remov-
ing these addresses as they add no semantic information. Next,
because some FBs are generic and can be used in any process (e.g.,
ETHERNET_MODBUSMASTER_TCP, MD5_DD, RTU_TO_ASCII),

they had to be excluded as well. Initially, we ran experiments using
all the FB names, including general purpose FB. This yielded lim-
ited accuracy, 50%. After removing common FBs, we observed an
improved testing accuracy reaching up to 82.35% (Table 4).
Feature Selection: To extract the feature words from the data we
used two different methods: The frequency of words, using count,
and the importance of a word relative to the entire corpus, using
term frequency-inverse document frequency (TF-IDF). Selecting
the words using TF-IDF yielded better results. To select the most
effective features, we follow the same procedure as subsection
4.1.2. We identify that the MI performed the best, by giving the
highest testing accuracy and showing the least signs of overfitting.
Furthermore, we note that the optimal number of features is 45.
Model Selection: Table 4 shows the variation of training and test-
ing accuracy with different selection parameters and number of
features on both the MNB and SVM models. FB based classifica-
tion performed better using the MNB model with training and test
accuracy being 84.85% and 82.35% respectively.
Insights:We extracted the top features (FB names) that contributed
to the classification of each binary to the corresponding process.
Table 7 shows the list of FB names reciprocal to top features. Even
with a limited dataset, it is evident that these FB produce meaning-
ful and unique features (e.g., fb_time, ramp_init) describing each
process. There are other features, like blink, for example, that might
not aid in classification. During our experiments, the ML model
extracted 45 features. Our tests show that for this model, increasing
the number of features resulted in higher testing accuracy.
4.2.2 Classification based on PLC binary strings. We also use the
ASCII strings embedded in the binary. Using the Unix command
strings, we were able to find printable strings. We found that more
than 75% of our dataset contains meaningful strings.
Cleaning strings: Our algorithm extracts text from control bina-
ries using the strings command, and then delimits the words and
translates them into English. Our binaries included 10 languages,
of which more than 30% were in German (as shown in Table 6). We
automatically translate the strings using Google Cloud Vision API.
Since strings prints all printable strings of 4 characters and longer,
this resulted in many meaningless words that we discarded.
Feature Selection:We used same feature selection procedure as in
subsection 4.2.1 Although, having 2000 features results in a better
training accuracy, the discrepancy between training (88.23%) and
testing (80%) accuracies elude to overfitting. We thus choose our
optimal number of features to be 500.
Model Selection: From our experiments on SVM and MNB, the
MNBmodel performed better and therefore, we use it for text-based
classification of the binary strings. We obtain a training and testing
accuracies of 82.30% and 80%, respectively with MI statistic.
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Process No. Top Features-FB based Classification Top Features- Strings based Classification
Pressure
Control 17 pack, mc3_power_init, mc3_reset_init, mc3_stop_init, hysteresis,

fu_linear_2punkt, extract, ramp_int, prot_wait_for_init, blink
pressure, temperature, value, pump,
sys, data, time, file, heating, cooling

Temperature
Control 17 integral, hysteresis, derivative, pid, ramp_int, fu_linear_2punkt,

charcurve,blink_init,hysteresis_init, blink, prot_wait_for_init
state, save, heating, send, manual,
hour, alarm, active, heat, temp, cooling

Timer 18
fb_time, fb_stairwelllight1, derivative_init, integral_init,
pos_750_635_init, pid, integral, fb_latchingrelay, derivative,
pack, fbtimeswitch, prot_wait_for_init, hysteresis_init, blink

value, alarm, active, data, temp, file,
set, send, pressure, time, sys, cooling,
heating, min, start, open, status

Table 7: Top features that are used in process both fingerprinting methods in control binary based classification.

Fingerprinting with HMI Test Accuracy (in %)
ML model Size Chemical Energy Water Total
Image only M: 120MB 98.8 69.7 75.9 80.9
Text
only

M: 94.4KB
D: 472.2 KB 100 75.8 75.9 84.0

Combined ≈120MB 100 84.8 79.3 88.3
PLC binaries
ML model Size Pressure Heat Time Total
FB only M: 2.9 kB 87.7 56.2 100 82.4
Strings
only

M: 24.7 kB
D: 39.6 kB 81.4 76.3 83.3 80

Combined M: 27.6 kB
D: 39.6 kB 100 76.3 100 93.33

Table 8: Boundaries for ICS fingerprinting. Green cells: max-
imum attack confidence, M: Model, D: Dictionary.

Insights: Strings for process classification showed high training
accuracy while the testing accuracy was capped at 80%. This can be
attributed to the size of the dataset or the specificity/static nature
of processes. It is important to note that increasing the number of
features beyond 500 resulted in signs of overfitting; this can also
be due to the size and diversity of the dataset. To have a better
understanding of how the binaries were classified, we examine the
features used for classification. The top features included process-
specific words such as pump, pressure, etc. as shown in Table 7.
4.2.3 Combined classification model for ICS process identification.
Similar to the combined model used for sector classification (sub-
section 4.1.3), we also parallelize the two process classification ML
models to achieve higher accuracy. Both FB and string ML models
are leveraged to classify the process correctly. The combined model
assesses the prediction probability from both the FB’s and string’s
based classification models and chooses the class with the higher
confidence level. This model is especially useful in cases when the
binary does not contain useful information from either source (FB
or strings). Our tests show that our combined model results in more
than 10% increase in testing accuracy of both models (FB based:
10.98%, Strings based: 13.33% ), with a final accuracy of 93.33%.
4.3 Attack boundaries
The proposed reconnaissance methodology can be effectively used
in un-targeted attacks on different ICS environments without hu-
man intervention. Nonetheless, any statistical (ML) model can in-
troduce a probability of failure which is reflected from the accuracy
metric. Table 8 discusses the boundaries of reconnaissance.

We observe that the text-based ML model is much smaller (94.4
KB) than image-basedMLmodel (120MB) for ICS sector fingerprint-
ing. The dictionary size includes top features and their translation
in the detected languages (≈ 27). Although the accuracy of the
combined model is 5% higher than a text-based model, the size of
the payload is 3 orders of magnitude more. Therefore, we consider
the text-based model to be a light-weight version of the payload.
The attacker may choose the combined model if her capabilities
allow for the payload to remain undetected. Chemical sector, in all
the models, has highest reconnaissance probability.

For process fingerprinting, we observe that both the pressure and
timer control processes have a high testing accuracy using FB-based
and strings-based classification, respectively, with reduced payload
size (2.9 kB and 24.7 kB respectively). We also include a dictionary
of the top features (500 words) and include their translation to
all the languages detected in our dataset (10 total), resulting in a
39.6 kB payload, if multiple languages are targeted. The combined
model introduces more than 10% increase in testing accuracy and
maintains a practical size of 67.2kB for all languages identified.

4.4 Intelligence collection
Before we move to process-aware attack, we also explore the intel-
ligence that can be collected during the reconnaissance phase.

4.4.1 From HMI screenshots. While extracting text strings from
HMI screenshots, we included some attack-aid strings like ‘alarm’,
‘max’, ‘min’, ‘set-point’, common process-specific variables (pres-
sure, temperature, etc.), their variations and extracted the digits (if
any) next to them. This helps the adversary in automatic payload-
design and gives insights about the operational limits of the plant.
We can see such useful intelligence collection from a real-life exam-
ple in Fig. 3: Operational limits, alarm thresholds, and plant goals
(set-points) can be extracted from the HMI screenshot.

4.4.2 From PLC binaries. PLC binaries also contain similar values
like set points and hardcoded values (eg, PID values, Cycle time).
PLC control binaries are unique and different for each vendor. Using
ICSREF [21], we explored the possibility to use the Global INIT
subroutine to extract hard-coded values such as set points and
PID values. This analysis is enabled by the reconnaissance steps
before. An adversary that gains access to values from the control
binaries can use them effectively. In our end-to-end case study, we
automatically extract and replace the PID values from the binary.
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Figure 5: A typical control system with transfer functions
and signals of each module. Observability of the attacker is
depicted by the highlighted module.

5 CONSTRAINED PROCESS-AWARE ATTACK
A common characteristic of a process-aware attack is to cause
sustainable and meaningful damage. Most of the work, however,
achieves this attack objective using sensors or actuators[45]. [15]
is the only work that discusses the construction of such attacks
based on controllers, but there is limited discussion about how it
can generalize. Moreover, [15] changes the signals to/from PLCs,
essentially spoofing the sensing and actuating signals without any
manipulation on PLC variables. In this work, we bridge this gap
in the literature by enumerating the steps to cause PLC control
code-based attacks that remain within the operational limits of the
plant (like causing a sustainable decrease in production). These
attacks are performed by just variable value changes in the control
code in a generic PID controller, commonly used in ICS.

Since the attacks cause a perturbation (deviation) in the physical
quantity, we name them perturbation-based attacks. These are two
specific types of attack which remain within operational limits of
the physical quantity: One that causes a stable change in a physi-
cal quantity (like stable decrease in production), and another that
causes an oscillating perturbation within upper and lower limits
(example, causing turbulence in pipes). Depending on the objectives,
the adversary can program the payload to choose. Our formulation
of attack methodology follows control theory convention to rep-
resent functions: The time- and frequency-domain functions are
represented in small and capital letters, respectively.

5.1 Stable Perturbation attack
To induce a stable yet configurable error in a constant physical
quantity, we use a control-theoretic approach of manipulating the
Proportional-Integral-Derivative (PID) controller. PID-based con-
troller algorithms are standard in ICS environment control and
are available as a configurable FB in PLC engineering platforms
(Codesys). Moreover, it is possible to extract and manipulate the
PID variable values from the binary of the control code [21]. Thus,
changing the Proportional (𝐾𝑃 ), Integral (𝐾𝐼 ) and Derivative (𝐾𝐷 )
coefficients, becomes a natural choice to inject stealthy payload.

The transfer function, a ratio between output and input signals
in the frequency domain, reflects the characteristics of the pro-
cess. Let 𝐺𝑐(𝑠) and 𝐺𝑝(𝑠) denote the controller and plant transfer
functions respectively, which define the characteristics of each of
these modules. Any feedback loop in a control system tracks the
desired specification (reference or set-point 𝑅(𝑠)) with allowable
deviation or Error (𝐸(𝑠)). From the definition of transfer function,
the output 𝑂(𝑠) = 𝐺𝑐(𝑠)𝐺𝑝(𝑠)𝐸(𝑠). A typical control system and
the observability of an attacker is summarized in Fig. 5. The error
expression 𝐸(𝑠) = 𝑅(𝑠) −𝑂(𝑠), for any reference input and unity
feedback is given by [16]:

𝐸(𝑠) = 𝑅(𝑠)
1 +𝐺𝑐(𝑠)𝐺𝑝(𝑠)

(1)

Since Laplace transform of a constant-valued function like 𝑟(𝑡) = 𝑘
is 𝑘/𝑠 , if the set-point is a constant (for example: constant pres-
sure, constant temperature etc. where 𝑟(𝑡) is a constant physical
quantity), then Eq. 1 becomes:

𝐸(𝑠) = 𝑘/𝑠
1 +𝐺𝑐(𝑠)𝐺𝑝(𝑠)

(2)

A stable perturbation is analogous to a control error. Therefore, a
stable perturbation 𝑒(𝑡) is an error measured in steady-state (when
𝑡 → ∞). From the Final Value Theorem (FVT) of Laplace transform,
this is equivalent to measuring 𝑠𝐸(𝑠) as 𝑠 → 0. Thus, the stable
perturbation is 𝐸𝑆𝑃 =

𝑘
1+𝐺𝑐(𝑠)𝐺𝑝(𝑠) . An attacker with direct access

to PLC source code, can change 𝑅(𝑠) or 𝑘 directly. For an attacker
with access to PLC binary, can only𝐺𝑐(𝑠) coefficients using ICSREF.

At frequency 𝑠 , the transfer function of a generic PID controller
(𝐺𝑐(𝑠)) becomes [16]:

𝐺𝑐(𝑠) = 𝐾𝑃 + 𝐾𝐷𝑠 + 𝐾𝐼/𝑠 (3)

Thus, from Eq. 2 and 3 and expression for 𝐸𝑆𝑃 , we have two impor-
tant inferences in terms of designing our attack strategy:

𝐸𝑆𝑃 = 0 ∀𝐾𝐼 ≠ 0
𝐸𝑆𝑃 ∝

1
𝐾𝑃

We apply these control-theoretic rules to build our attack strategy
as summarized in Table 9. First, the payload switches off the in-
tegral controller (𝐾𝐼 = 0). Then, it slowly decreases the value of
proportional gain coefficient (𝐾𝑃 ), while getting feedback on attack
impact. Note, in our attack strategy, we avoid manipulation of 𝐾𝐷
because it makes the system unstable [16].

5.2 Oscillatory perturbation attack
A special case of perturbation-based attacks are when the perturba-
tions change very rapidly but, not beyond operational limits. These
kind of attacks are very much dependent on the type of the plant
(by extension 𝐺𝑝(𝑠)) and may not be applicable to all the control
loops in the plant. To achieve oscillatory perturbation, we use the
empirical tuning philosophy of a common PID tuning technique
called Ziegler-Nichols (ZN) PID tuning [5]. This technique is useful
to empirically find the values of 𝐾𝑃 , 𝐾𝐷 and 𝐾𝐼 for plants with
simple transfer functions such that the controller meets the design
criteria of output response. The method followed is that first the
derivative controller and integral controller are switched off. Then,
it is required to find the ideal sign of 𝐾𝑃 , i.e. if a positive change
in reference value reflects as a positive or negative change in the
output response. We follow this method to find the ideal sign, how-
ever, we also experiment with the negative sign of 𝐾𝑃 because with
negative proportional gain, positive feedback increases oscillations
in the system [16], which is the goal of the attack. Then, like in
ZN method of PID tuning, we increase the 𝐾𝑃 value to the point of
sustained oscillations. The value of 𝐾𝑃 changes the frequency and
amplitude of oscillations and it can be experimentally evaluated to
find the value for a particular frequency and amplitude.
5.3 Physically configurable attack-trigger time
These are attacks which get triggered at a configurable time solely
based on values manipulated in the control code (by only changing
𝐾𝑃 , 𝐾𝐼 and 𝐾𝐷 coefficients). They do not need any extra trigger
logic; our attack model just changes values of existing variables
of controller code to prevent getting detected by code injection
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Attack type
Attack
on Attack design strategy Enabler

Stable
Perturbation

Set-
point

New Set-point = Actual
- Target perturbation

PLC
source
code

𝐾𝑃
𝐾𝐼 = 0;
Stable perturbation ∝ 1

𝐾𝑃

ICSREF

Oscillatory
Perturbation ±𝐾𝑃

𝐾𝐼 = 0; Increase ±𝐾𝑃 for
sustained oscillations ICSREF

Physically
configurable
trigger time

𝐾𝑃 Trigger time ∝ 1
𝐾𝑃

ICSREF

Table 9: Summary of payload characteristics.

defense mechanisms. Although both integral and proportional con-
troller gains effect time response, the adversary can onlymanipulate
the proportional controller to perform the attack since both our
attack strategies have 𝐾𝐼 = 0. Thus, in this case the closed-loop
transfer function becomes 1

1+1/𝐾𝑃𝐺𝑝(𝑠) . Since, we aim to change
the response characteristics of the system, we need to manipulate
the time constants of the system. Before we calculate the time con-
stant of the system, it is important to note that inverse Laplace
transform of 1/𝑎

(1/𝑎)𝑠+1 is 𝑒−𝑎𝑡 , where 1/𝑎 is the time constant. Now,
for simplicity, let us consider a first-order control system i.e. power
of 𝑠 in denominator of the transfer function is 1, then the plant
transfer function is of the form 𝐴

𝑠+𝑎 and the closed-loop transfer
function is 𝐾𝑃𝐴

𝑠+𝐾𝑃𝐴+𝑎
. For such a transfer function, the closed-loop

time constant is 1
𝐾𝑃𝐴+𝑎

. For higher-order systems, similar analysis
shows that the time constant is inversely proportional to 𝐾𝑃 . Thus,
a higher value of𝐾𝑃 will lead to lower value of time-constant which,
in turn, leads to faster time-response.
5.4 Selection of attack
Completing the automated attack generation, in this subsection we
provide recommendations on the choice of attack for the common
ICS processes (from literature) along with the ones found in the
constructed dataset of the PLC binaries. We state the following
simple rules based on the characteristics of the attack to maximize
its impact while adhering to the operational thresholds:

• Choosing Stable perturbation attack: Since this attack cre-
ates a simple deviation, any attack vector generated will drive the
plant to a sub-optimal state. But the adversary must be careful
not to force the deviation towards ‘explosion’ (high speed, high
pressure, high temperature, etc.). However, since processes are
designed for maximum functional profit, reducing themwould in-
cur financial losses. Thus, for pressure, temperature, speed, timer,
flow-rate control loops, our general recommendation is to make
the process less efficient/slower by selecting stable perturbations.

• Choosing Oscillatory perturbation attack: This attack lever-
ages the un-modeled characteristics (e.g., oscillations of a product
against the walls of the container/pipes causing quality degrada-
tion) and has potential for physical damage (e.g., Stuxnet). Since
this attack involves complex parametric oscillations, attack vec-
tors for smaller amplitude should be generated. Prime process
targets are production, level, and valve control loops.

In our end-to-end case study, the payload chooses an attack based
on the above recommendations. This can also be completely con-
figurable based on the attacker’s motivation.

6 CASE STUDY: TENNESSEE EASTMAN
In this section, we give an overview of the attack and present an end-
to-end case study on a Hardware-In-The-Loop (HITL) testbed of a
chemical plant. Tennessee-Eastman (TE), is a non-linear chemical
process which takes in five input products (𝐴, 𝐵,𝐶, 𝐷, 𝐸), performs
exothermic reactions, and produces two main products (𝐺,𝐻) and
one by-product (𝐹). The process reactions depend on temperature,
pressure, and quality (molar concentrations) conditions. These re-
actions are performed by five major physical components: Reactor,
Condenser, Stripper, Separator, and Compressor. Each of these com-
ponents imposes safety conditions over possibly explosive physical
quantities (like pressure, compressor speed, temperature, etc.) and
together drive the plant towards a profitable state. [10] is a lin-
earized MATLAB simulation of TE which contains 18 PID loops. It
embeds process disturbances which give sufficient complexity in
emulation of real-world plants. It also embeds alarms relating to
unsafe conditions which the designed attacks aim to avoid. In the
real-world scenario, we consider that different PLCs will execute
different PID loops. Therefore, in our HITL TE testbed, we migrate
two such PID loops to a PLC. The PLC runs two cascading PI loops
that take in the values from two sensors and control the reactor
pressure and purge rate. The hardware used is shown in Fig. 6. The
testbed uses a Wago 750-881 PLC which has a 32-bit ARM CPU that
runs on a Nucleus RTOS, and a 32KB non-volatile memory. The
PLC was programmed in Structured Text. To communicate with
the simulation model hosted on the PC, the testbed deploys a Serial-
Interface Board (SIB) that is equipped with analog-to-digital (A/D)
and digital-to-analog (D/A) converters. Following the guidelines
presented in Section 5, the payload operates as:
ICS Sector fingerprinting: Congruent to our threat model, we
assume that in the real world, the adversary would be able to infect
the general-purpose computer which hosts the HMI (like the one
shown in our setup in Fig. 6). We perform the ICS sector fingerprint-
ing by taking a screenshot of the TE HMI and running it through
our parallel classification model. Our 49.1 KB HMI-based finger-
printing script refers to the weights for image-based classification,
extracts text-strings for text-based classification, and finally utilizes
the parallel architecture to classify an image in 3.09 seconds with
≈ 98% class prediction probability as Chemical Sector.
ICS Process fingerprinting and intelligence extraction: From
the HMI, our code traverses the ICS network to identify PLCs con-
trolled by the HMI. Through an FTP connection, the code extracts
the control binary from the PLC. Our payload extracts the FBs and
strings from the binary, classifying the binary as a Pressure Control
process. This classification reflects the actual functionality of our
TE testbed. ICSREF, which is 383.1 kB in size and included in our
payload, identifies the presence of a PID function block and extracts
its values. This process takes 30.57 seconds.
Attack: Post plant reconnaissance, the payload designs attack val-
ues for pressure control (identified variable). From the process-
aware attack point of view, pressure is a good candidate for attack
evaluation because it controls the chemical reactions and also may
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Figure 6: Experimental setup to demonstrate ICS finger-
printing and intelligence collection based on HMI screen-
shots and PLC binaries. The setup is aHardware-in-the-loop
testbed for Tennessee Eastman Chemical process.

Figure 7: Stable perturbation attack on pressure control.

cause explosions if not controlled within safe limits [22]. We assume
that the inherent alarm thresholds of the MATLAB model as the
baseline for operational limits of our testbed. For pressure control
loop, 3000 kPa is defined as the fail-safe condition. Compromising
the pressure PLC, we were able to gain all the intelligence regarding
operational limits and set-points.

According to the recommendations of subsection 5.4, our au-
tomated payload selected a stable perturbation attack setting the
lower operational limit to 10% of the original set-point. Under such
constraints, the attack could cause a maximum decrease of 280 kPa
in pressure from 2800 kPa to 2520 kPa. Fig. 7 describes the results
of the experiment. Four successful attack vectors could be gener-
ated from principles described in section 5 changing the pressure
between 2625 kPa and 2750 kPa. This can result in financial degra-
dation, and it can be seen in the increase in operational cost from
$89,000 per month to $103,000 per month. The financial damages

caused here attest to our philosophy of attack design; we phys-
ically stay within the operational limits but cause damages that
accumulate over time. We investigated many loops in TE testbed to
find suitable attack vectors (including oscillatory perturbation and
physically configurable trigger time) for different alarm thresholds
and reported our findings in Appendix.

7 POSSIBLE DEFENSES
Defense against fingerprinting fromHMI screenshots: There
have been many advances in adversarial machine learning, where
undetectable addition of noise to images can change the prediction
of an input; These attacks have been demonstrated on facial recog-
nition [39] and text classification using OCR [41]. Recent work on
reverting malicious classifications by addition of noise and using
majority voting of the fuzzed copies may also be used to confuse
fingerprinting mechanisms [38].
Defense against fingerprinting fromPLCbinaries: Fingerprint-
ing using control binaries depends on the attacker ability to extract
PLC binary. A practical method to prevent binary extraction is
to disable FTP connections, but the control binary cannot be up-
loaded remotely anymore. A more realistic solution is to enforce
a password-protected FTP connection without default passwords.
Semantically, assuming the attacker can have access to the binary,
the binary functional blocks and strings can be poisoned by adding
random code and text. Adding random code and text is relatively
straightforward. We advise against removing descriptive binary
strings as important messages in stressful situations can be helpful.
Process-aware defenses: Focusing on defenses applicable to our
attacks, one of the most efficient ways to detect malicious manipu-
lations in sensor measurements is by modeling it [27]. Two models
that have been used as benchmarks are Auto-regressive (AR) model
[18] and Linear Dynamic State-Space (LDS) model [40]. AR over-
simplifies ICS processes, sometimes making it difficult to model the
sensor readings, and LDS requires extensive ICS domain knowledge
to precisely predict a measurement.PASAD [3], a recent work from
CCS ’18, outperforms the other defense mechanisms by detecting
even the most subtle deviations by leveraging the departure of ICS
dynamics from baseline. However, stealthy adversarial examples on
sensor measurements [13] has opened the path to control-theory
based attacks leveraging Deep-Learning frameworks to fool state-
of-the-art defense mechanisms like PASAD.

8 CONCLUSION
In this work, we consider a constrained threat model where the
adversary has no prior knowledge of the target ICS environment.
We present a methodology for single-point infiltration through an
HMI. For successful identification of the plant, we constructed a
dataset using publicly available ICS HMI images and PLC binaries.
We then trained several machine learning models to select our final
classifier that identifies ICS sector and process. We also use the HMI
screenshots and the binaries to extract data to build intelligence
for attack design. We leverage control theory to devise generic
perturbation-based attacks in ICS. Our results show that, depending
on the sector/process/visibility, an adversary can carry-out an end-
to-end attack with high accuracy, even with no prior knowledge.
This calls for exhaustive security assessment of ICS and the design
of robust defense mechanisms that would reduce the attack surface.
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APPENDIX
A CONSTRUCTION OF DATASET
In this work, we propose to fingerprint a process on the basis of an
HMI screenshot but a collection of HMI screenshots is not avail-
able as a public database. To facilitate method of fingerprinting
using ML, we collected diverse images belonging to various Criti-
cal Infrastructure (CI) sectors. The Cyber + Infrastructure unit of
Department of Homeland Security, which is responsible for protect-
ing CI from cyber and physical attacks, enlists 16 different sectors
for categorization of functionalities, threats and, vulnerabilities
[34]. The subsubsection describes the methodology followed in the
collection of dataset.

A.1 Collection of HMI screenshots
We wanted to leverage the data publicly available on the inter-
net. Some vendors advertise their products and share screenshots
of their HMIs and some utilities advertise their projects sharing
pictures of the installed CI devices and SCADA systems. A varia-
tion of the second case was used by Stuxnet to find information
about Iranian Nuclear Power Plants. We used search engines like
Google and Bing to find such images. A Python package called
google_images_download was used along with chromedriver to
download images in bulk. Once a few viable images were found,
more images were found using image search option in these search
engines. The following search strings were used:
Name of each sector: Each sector was searched by adding key-
words like ‘scada’, ‘hmi’ and ‘human machine interface’ using
google_images_download package. For example, chemical sector
images were searched for with ‘chemical hmi scada human ma-
chine interface’ as the search string. Each <space> in the search
string is interpreted as ’+’ and thus, all the combinations were
searched using the api. We set the limit of download to 1000 per
sector but many images faced download errors due to broken links,
unknown file types or url-errors. We expected a total of 16k images
but around 6.3k images were downloaded using this method. This
method downloaded the maximum number of images in bulk.
Popular vendor names and their product names: We targeted
5 popular CI vendors: Siemens, General Electric, ABB, Schneider
Electric, Yokogawa and their corresponding SCADA softwares to
use in search strings like ‘SIMATIC WINCC’ from Siemens, ‘iFix’
from General Electric, ‘Wonderware’ from Invensys (now Schneider
Electric). Apart from SCADA, we also searched for products that
had HMI interfaces: iRIO PLC from Schneider Electric Telecontrol
runs a software called xFlow which has a web interface.
Utilities: We also looked at select Utilities for some countries like
‘National Thermal Power Corporation’, or ‘Saudi Arabia Desalina-
tion.’
Random search: standalone search strings like ‘Scada’, ‘HMI’, ‘Dis-
tributed Control System’, ‘PLC interface’ were used for collecting
more images.

Using search engines, we downloaded more than 10k images but
not all the images were useful. Many images were cartoons, many
depicted SCADA/HMI in concept and many were different images
of the words ‘SCADA’ and ‘HMI’. We cleaned the dataset for usable
images and we found less than 5 % of the images were actually

HMI screenshots. The usable dataset after cleaning resulted into
500 images belonging to different sectors.

In our second methodology, we used a Search Engine that finds
IoT deices on the internet, Shodan [30]. We used Shodan Images,
a dedicated API in Shodan that looks for images in IoTs, to search
for screenshots in Industrial Control System (ICS) (search string:
‘screenshot.label:ics’). As an exhaustive search, we also looked for
images running VNC service (search string: ‘has_screenshot:true
RFB’). Most of the screenshots were those of the login screen and
21 images were usable for constructing our dataset.

A.2 Image Annotation
Only three sectors, Chemical Sector, Water and Waste Water Man-
agement Sector, and Energy sector, had more than 100 usable HMI
images. Since small number of images in a sector would bias the
algorithm extremely, we chose these three sectors for classification.
We performed manual labelling of data following the steps listed
below:
Visual inspection: Presence of key elements like water tanks,
common chemical names, electrical switches and connections are
strongly indicative of the sector a process belongs to.
Visiting websites and collecting metadata: Visiting the source
of the image reveals more information about the image. Other
meta-data used for classifying images were filenames, description,
language and location. We also used the meta-data downloaded
using google_images_download to help in classification.
Sub components of a sector: Critical infrastructure sectors are
themselves composed of smaller processes. For example, power
consumption of a Chemical plant may be considered a critical pro-
cess of its own. In our method of image annotation, we classify a
screenshot based on the contents on the screenshot even though
it may be a part of another CI sector because the adversary is
interested in learning about the current system she was able to
hack.

A.3 Image metadata for reconnaissance
This subsection focuses on the information obtained from the im-
ages. This is done to exhaustively characterize our dataset. We
keep track of the meta-information collected while constructing
the dataset. We collected the data downloaded as metadata using
google_images_download python library. The ‘description’ section
of the images revealed precise plant information as well. For exam-
ple, the following is a description of one image: Stainless Steel HMI
Solution for Food and Beverages Industry. Although this particular
image was not used in this work because of resolution issues but
similar descriptions, available for images used for machine learning,
helped in image annotation.

We also searched for these information on Shodan to see if these
images verifiably correspond to IoTs on the internet. For example, if
a city is revealed from the metadata with some common CI vendor
names, we searched for the combination of city and vendor with
ICS ports like 502, 2404 which correspond to two common protocols
used in ICS, Modbus and IEC 104. Using metadata from images we
could learn more about CIs deployed in various places in the world.
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B ICS FINGERPRINTING
B.1 Process classification using HMI

screenshots
In Section 4.4.2, we have discussed how ICSREF could be used to
fingerprint a particular function block which could be a PLC control
loop. In this section we consider the attack scenario where con-
tinuous screenshots of HMI could be taken to build a time-series
of all the variables that are being monitored in the HMI. Using
this time-series, we demonstrate a possible way of automatically
fingerprinting the infected loop by considering the time-series as
a signature for that process variable. Please note, there cannot be a
machine learning model that can classify a process variable in this
way across all sectors in all plants. Therefore, this methodology
of reconnaissance depends on the plant attacked and is not gen-
eralizable according to our definition in Section 3. For example, a
process variable pressure may have a time series with average 2800
kPa and 1000 kPa for different kinds of ICS plants and we cannot
universally make a time-series representative of pressure in this
way. Thus, this method of process variable identification is depen-
dent on the attacked plant. In this methodology, the reconnaissance
tool identifies common process variable names from the HMI using
OCR and builds time-series for them.

As mentioned in the setup, each of the control (PID) loops may
be considered to be controlled by a PLC which in turn, may be
monitored by the HMI. Here, we collected data from TE model from
the inputs of the PID loops emulating collection of data from inputs
of the PLC. Each of these inputs are the process variables of the
plant considering the feedback value coming to the PLC (Fig. 5).
We built time-series for those process variables to train a Naive
Bayes Classifier. Our aim was to finger print all the independent
loops of the MATLAB model. We found 16 out of 18 loops were
directly interacting to the measured variables. We collected data
for 60 hours of operation amounting to 900 data points for every
PID loop. Further, we split the data into time-series consisting of
30 data-points and calculated the average values of the time-series
for the 16 different measured variables. We used 80% of the dataset
for training and the rest as test set to evaluate the efficiency of the
classifier. Our aim was to identify each of the PID loops with high
accuracy using the corresponding time-series. The test accuracy for
all the 16 PID loops was 91.67%. Thus, from this machine-learning
based reconnaissance, we were able to fingerprint a particular loop,
thus, a process variable and further assess the vulnerability of a
particular loop towards successful fingerprinting and attack.

B.2 Sector classification using PLC binaries
We perform experiments to show the efficacy of using PLC FB/FBs
and strings for sector classification. We use the same dataset of
binaries. Using FB/FBs, we achieved accuracy of 33% which attested
to the fact that a process F/FB cannot be used to fingerprint ICS
sector. After data cleansing and string translation, we trained ma-
chine learning models with these stings to classify binaries into the
sectors shown in Table 6. Our results show that that this method
is ineffective for classifying the binary with an accuracy of 33.33%.
Since the PLC string-based classification model performed poorly
for ICS sector classification, We performed another experiment

Figure 8: Oscillatory perturbation attack on production.

leveraging transfer-learning to classify the PLC binaries obtained
from the field without adding any binary specific information to
the machine-learning model. The machine learning model pre-
dicted 84.21% of the binaries to belong to the energy sector. On
manual analysis we found many binaries contain processes in the
energy sector, namely boiler control and temperature control and
the accuracy was found to be slightly better. This was a prelim-
inary experiment but this concept may be used for more robust
reconnaissance.

B.3 ICS device fingerprinting
ICS attack literature has also focussed on fingerprinting vendors
or specific devices to enable attack vectors be tailored according to
the device [14]. In this work, we target generalized attack vectors
which can be aided with device level fingerprinting for successful
infection.

C OTHER PROCESS-AWARE ATTACKS
C.1 Oscillatory perturbation attack
We performed oscillatory perturbations on plant production (Fig.
8). Production was chosen as the process variable for this attack
because we wanted to experiment with attacks that are not directly
leverage the modelled dynamics. The objective of these stealthier
attacks are malicious physical dynamics which are not part of plant
performance metrics and thus, are undetectable by any threshold.
For our first attack, we choose the alarm thresholds as follows: upper
limit 25 kg/hr and lower limit 20 kg/hr. The payload generated an
attack that oscillates the production between 23 kg/hr and 20 kg/hr.
The second attack is more aggressive and the alarm thresholds in
production are chosen to be between 15 kg/hr and 30 kg/hr. This
resulted in oscillations of production between 16 kg/hr and 30 kg/hr.
The oscillatory perturbations can be further increased with further
change in 𝐾𝑃 , but then the system would be driven into unstable
region of operation (i.e. the exponential increase of oscillations).
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Figure 9: Stable perturbation attacks with physically config-
urable trigger time.

C.2 Physically configurable attack trigger time
From Fig. 7, we see that the attacked pressure values settle at dif-
ferent time for different payloads. Here we choose another process
variable to specifically perform this attack. We performed the stable
perturbation attack with physically configurable trigger time on
production. We chose production to perform this attack because
decrease in production causes direct losses to ICS. The trigger times
for such explosive attacks are chosen between 0 and 40 hours. As
can be seen from Fig. 9, the payload was able to find various trigger
times at 4, 10 and 36 hours after infection. Thus, if an adversary
chooses to cause explosive attacks to ICS plants, this completely
physical attack may be used to cause damage after he escapes.
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