Files
internal-docs/papers/RefPaperByMarkyan04/Topic1 NetworkICS traffic generation/Practical GAN-based synthetic IP header trace generation using NetShare/Practical GAN-based synthetic IP header trace generation using NetShare.bib
2026-01-22 16:08:52 +08:00

17 lines
1.5 KiB
BibTeX
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
@inproceedings{10.1145/3544216.3544251,
author = {Yin, Yucheng and Lin, Zinan and Jin, Minhao and Fanti, Giulia and Sekar, Vyas},
title = {Practical GAN-based synthetic IP header trace generation using NetShare},
year = {2022},
isbn = {9781450394208},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3544216.3544251},
doi = {10.1145/3544216.3544251},
abstract = {We explore the feasibility of using Generative Adversarial Networks (GANs) to automatically learn generative models to generate synthetic packet- and flow header traces for networking tasks (e.g., telemetry, anomaly detection, provisioning). We identify key fidelity, scalability, and privacy challenges and tradeoffs in existing GAN-based approaches. By synthesizing domain-specific insights with recent advances in machine learning and privacy, we identify design choices to tackle these challenges. Building on these insights, we develop an end-to-end framework, NetShare. We evaluate NetShare on six diverse packet header traces and find that: (1) across all distributional metrics and traces, it achieves 46\% more accuracy than baselines and (2) it meets users' requirements of downstream tasks in evaluating accuracy and rank ordering of candidate approaches.},
booktitle = {Proceedings of the ACM SIGCOMM 2022 Conference},
pages = {458472},
numpages = {15},
keywords = {generative adversarial networks, network flows, network packets, privacy, synthetic data generation},
location = {Amsterdam, Netherlands},
series = {SIGCOMM '22}
}