transformer

This commit is contained in:
2026-01-27 00:41:42 +08:00
parent 65391910a2
commit 334db7082b
12 changed files with 175 additions and 11 deletions

12
docs/README.md Normal file
View File

@@ -0,0 +1,12 @@
# Documentation Index
This folder tracks project decisions, experiments, and evolving ideas.
- `decisions.md`: design/architecture changes and rationales
- `experiments.md`: experiment runs and results
- `ideas.md`: future ideas and hypotheses
Conventions:
- Append new entries instead of overwriting old ones.
- Record exact config file and key overrides when possible.
- Keep metrics in the order: avg_ks / avg_jsd / avg_lag1_diff.

35
docs/decisions.md Normal file
View File

@@ -0,0 +1,35 @@
# Design & Decision Log
## 2026-01-26 — Two-stage temporal backbone (GRU) + residual diffusion
- **Decision**: Add a stage-1 GRU trend model, then train diffusion on residuals.
- **Why**: Separate temporal consistency from distribution alignment.
- **Files**:
- `example/hybrid_diffusion.py` (added `TemporalGRUGenerator`)
- `example/train.py` (two-stage training + residual diffusion)
- `example/sample.py`, `example/export_samples.py` (trend + residual synthesis)
- `example/config.json` (temporal hyperparameters)
- **Expected effect**: improve lag-1 consistency; may hurt KS if residual distribution drifts.
## 2026-01-26 — Residual distribution alignment losses
- **Decision**: Apply distribution losses to residuals (not raw x0).
- **Why**: Diffusion models residuals; alignment should match residual distribution.
- **Files**:
- `example/train.py` (quantile loss on residuals)
- `example/config.json` (quantile weight)
## 2026-01-26 — SNR-weighted loss + residual stats
- **Decision**: Add SNR-weighted loss and residual mean/std regularization.
- **Why**: Stabilize diffusion training and improve KS.
- **Files**:
- `example/train.py`
- `example/config.json`
## 2026-01-26 — Switchable backbone (GRU vs Transformer)
- **Decision**: Make the diffusion backbone configurable (`backbone_type`) with a Transformer encoder option.
- **Why**: Test whether selfattention reduces temporal vs distribution competition without altering the twostage design.
- **Files**:
- `example/hybrid_diffusion.py`
- `example/train.py`
- `example/sample.py`
- `example/export_samples.py`
- `example/config.json`

29
docs/experiments.md Normal file
View File

@@ -0,0 +1,29 @@
# Experiment Log
## Format
```
YYYY-MM-DD
- Config: <config file or key overrides>
- Result: avg_ks / avg_jsd / avg_lag1_diff
- Notes
```
## 2026-01-26
- Config: `example/config_no_temporal.json` (baseline)
- Result: 0.6474156 / 0.0576699 / 0.1981700
- Notes: no temporal stage; better KS, worse lag-1.
## 2026-01-26
- Config: `example/config_temporal_strong.json` (two-stage)
- Result: 0.6892453 / 0.0564408 / 0.1568776
- Notes: lag-1 improves, KS degrades; residual drift remains.
## 2026-01-26
- Config: `example/config.json` (two-stage residual diffusion; user run on Windows)
- Result: 0.7131993 / 0.0327603 / 0.2327633
- Notes: user-reported metrics after temporal stage + residual diffusion.
## 2026-01-26
- Config: `example/config.json` (two-stage residual diffusion; user run on Windows)
- Result: 0.7096230 / 0.0331810 / 0.1898416
- Notes: slight KS improvement, lag-1 improves; still distribution/temporal trade-off.

13
docs/ideas.md Normal file
View File

@@ -0,0 +1,13 @@
# Ideas & Hypotheses
## Transformer as backbone (Plan B)
- Hypothesis: self-attention may better capture long-range dependencies and reduce conflict between temporal consistency and distribution matching.
- Risk: higher compute cost, potentially more unstable training.
- Status: implemented as `backbone_type = "transformer"` in config.
- Experiment: compare GRU vs Transformer using `run_compare.py`.
## Residual standardization
- Hypothesis: standardizing residuals before diffusion reduces drift and improves KS.
## Two-stage training with curriculum
- Hypothesis: train diffusion on residuals only after temporal GRU converges to low error.

View File

@@ -32,6 +32,11 @@
"model_ff_mult": 2,
"model_pos_dim": 64,
"model_use_pos_embed": true,
"backbone_type": "transformer",
"transformer_num_layers": 2,
"transformer_nhead": 4,
"transformer_ff_dim": 512,
"transformer_dropout": 0.1,
"disc_mask_scale": 0.9,
"cont_loss_weighting": "inv_std",
"cont_loss_eps": 1e-6,

View File

@@ -32,6 +32,11 @@
"model_ff_mult": 2,
"model_pos_dim": 64,
"model_use_pos_embed": true,
"backbone_type": "transformer",
"transformer_num_layers": 2,
"transformer_nhead": 4,
"transformer_ff_dim": 512,
"transformer_dropout": 0.1,
"disc_mask_scale": 0.9,
"cont_loss_weighting": "inv_std",
"cont_loss_eps": 1e-6,

View File

@@ -32,6 +32,11 @@
"model_ff_mult": 2,
"model_pos_dim": 64,
"model_use_pos_embed": true,
"backbone_type": "transformer",
"transformer_num_layers": 2,
"transformer_nhead": 4,
"transformer_ff_dim": 512,
"transformer_dropout": 0.1,
"disc_mask_scale": 0.9,
"cont_loss_weighting": "inv_std",
"cont_loss_eps": 1e-6,

View File

@@ -144,6 +144,11 @@ def main():
temporal_hidden_dim = int(cfg.get("temporal_hidden_dim", 256))
temporal_num_layers = int(cfg.get("temporal_num_layers", 1))
temporal_dropout = float(cfg.get("temporal_dropout", 0.0))
backbone_type = str(cfg.get("backbone_type", "gru"))
transformer_num_layers = int(cfg.get("transformer_num_layers", 2))
transformer_nhead = int(cfg.get("transformer_nhead", 4))
transformer_ff_dim = int(cfg.get("transformer_ff_dim", 512))
transformer_dropout = float(cfg.get("transformer_dropout", 0.1))
model = HybridDiffusionModel(
cont_dim=len(cont_cols),
@@ -155,6 +160,11 @@ def main():
ff_mult=int(cfg.get("model_ff_mult", 2)),
pos_dim=int(cfg.get("model_pos_dim", 64)),
use_pos_embed=bool(cfg.get("model_use_pos_embed", True)),
backbone_type=backbone_type,
transformer_num_layers=transformer_num_layers,
transformer_nhead=transformer_nhead,
transformer_ff_dim=transformer_ff_dim,
transformer_dropout=transformer_dropout,
cond_vocab_size=cond_vocab_size if use_condition else 0,
cond_dim=int(cfg.get("cond_dim", 32)),
use_tanh_eps=bool(cfg.get("use_tanh_eps", False)),

View File

@@ -118,6 +118,11 @@ class HybridDiffusionModel(nn.Module):
ff_mult: int = 2,
pos_dim: int = 64,
use_pos_embed: bool = True,
backbone_type: str = "gru", # gru | transformer
transformer_num_layers: int = 4,
transformer_nhead: int = 8,
transformer_ff_dim: int = 2048,
transformer_dropout: float = 0.1,
cond_vocab_size: int = 0,
cond_dim: int = 32,
use_tanh_eps: bool = False,
@@ -132,6 +137,7 @@ class HybridDiffusionModel(nn.Module):
self.eps_scale = eps_scale
self.pos_dim = pos_dim
self.use_pos_embed = use_pos_embed
self.backbone_type = backbone_type
self.cond_vocab_size = cond_vocab_size
self.cond_dim = cond_dim
@@ -149,13 +155,24 @@ class HybridDiffusionModel(nn.Module):
pos_dim = pos_dim if use_pos_embed else 0
in_dim = cont_dim + disc_embed_dim + time_dim + pos_dim + (cond_dim if self.cond_embed is not None else 0)
self.in_proj = nn.Linear(in_dim, hidden_dim)
self.backbone = nn.GRU(
hidden_dim,
hidden_dim,
num_layers=num_layers,
dropout=dropout if num_layers > 1 else 0.0,
batch_first=True,
)
if backbone_type == "transformer":
encoder_layer = nn.TransformerEncoderLayer(
d_model=hidden_dim,
nhead=transformer_nhead,
dim_feedforward=transformer_ff_dim,
dropout=transformer_dropout,
batch_first=True,
activation="gelu",
)
self.backbone = nn.TransformerEncoder(encoder_layer, num_layers=transformer_num_layers)
else:
self.backbone = nn.GRU(
hidden_dim,
hidden_dim,
num_layers=num_layers,
dropout=dropout if num_layers > 1 else 0.0,
batch_first=True,
)
self.post_norm = nn.LayerNorm(hidden_dim)
self.post_ff = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim * ff_mult),
@@ -197,7 +214,10 @@ class HybridDiffusionModel(nn.Module):
feat = torch.cat(parts, dim=-1)
feat = self.in_proj(feat)
out, _ = self.backbone(feat)
if self.backbone_type == "transformer":
out = self.backbone(feat)
else:
out, _ = self.backbone(feat)
out = self.post_norm(out)
out = out + self.post_ff(out)

View File

@@ -60,6 +60,11 @@ def main():
model_ff_mult = int(cfg.get("model_ff_mult", 2))
model_pos_dim = int(cfg.get("model_pos_dim", 64))
model_use_pos = bool(cfg.get("model_use_pos_embed", True))
backbone_type = str(cfg.get("backbone_type", "gru"))
transformer_num_layers = int(cfg.get("transformer_num_layers", 2))
transformer_nhead = int(cfg.get("transformer_nhead", 4))
transformer_ff_dim = int(cfg.get("transformer_ff_dim", 512))
transformer_dropout = float(cfg.get("transformer_dropout", 0.1))
split = load_split(str(SPLIT_PATH))
time_col = split.get("time_column", "time")
@@ -87,6 +92,11 @@ def main():
ff_mult=model_ff_mult,
pos_dim=model_pos_dim,
use_pos_embed=model_use_pos,
backbone_type=backbone_type,
transformer_num_layers=transformer_num_layers,
transformer_nhead=transformer_nhead,
transformer_ff_dim=transformer_ff_dim,
transformer_dropout=transformer_dropout,
cond_vocab_size=cond_vocab_size,
cond_dim=cond_dim,
use_tanh_eps=use_tanh_eps,

View File

@@ -200,6 +200,11 @@ def main():
ff_mult=int(config.get("model_ff_mult", 2)),
pos_dim=int(config.get("model_pos_dim", 64)),
use_pos_embed=bool(config.get("model_use_pos_embed", True)),
backbone_type=str(config.get("backbone_type", "gru")),
transformer_num_layers=int(config.get("transformer_num_layers", 4)),
transformer_nhead=int(config.get("transformer_nhead", 8)),
transformer_ff_dim=int(config.get("transformer_ff_dim", 2048)),
transformer_dropout=float(config.get("transformer_dropout", 0.1)),
cond_vocab_size=cond_vocab_size,
cond_dim=int(config.get("cond_dim", 32)),
use_tanh_eps=bool(config.get("use_tanh_eps", False)),

View File

@@ -58,8 +58,9 @@ Defined in `example/hybrid_diffusion.py`.
- Positional embedding (sequence index)
- Optional condition embedding (`file_id`)
**Backbone:**
**Backbone (configurable):**
- GRU (sequence modeling)
- Transformer encoder (selfattention)
- Post LayerNorm + residual MLP
**Outputs:**
@@ -120,6 +121,7 @@ L = λ * L_cont + (1 λ) * L_disc
- `eps` target: MSE(eps_pred, eps)
- `x0` target: MSE(x0_pred, x0)
- Optional inverse-variance weighting: `cont_loss_weighting = "inv_std"`
- Optional **SNR-weighted loss**: reweights MSE by SNR to stabilize diffusion training
### 6.2 Discrete Loss / 离散损失
Cross-entropy on masked positions only.
@@ -130,6 +132,10 @@ Stage1 GRU predicts next step:
L_temporal = MSE(pred_next, x[:,1:])
```
### 6.4 Residual Alignment Losses / 残差对齐损失
- **Quantile loss** on residuals to align distribution tails.
- **Residual mean/std penalty** to reduce drift and improve KS.
---
## 7. Data Processing / 数据处理
@@ -169,18 +175,26 @@ Metrics (with reference):
- **Discrete JSD** over vocab frequency
- **Invalid token counts**
**指标汇总与对比脚本:** `example/summary_metrics.py`\n- 输出 avg_ks / avg_jsd / avg_lag1_diff\n- 追加记录到 `example/results/metrics_history.csv`\n- 如果存在上一次记录,输出 delta新旧对比
**指标汇总与对比脚本:** `example/summary_metrics.py`
- 输出 avg_ks / avg_jsd / avg_lag1_diff
- 追加记录到 `example/results/metrics_history.csv`
- 如果存在上一次记录,输出 delta新旧对比
Recent run (user-reported, Windows):
- avg_ks 0.7096 / avg_jsd 0.03318 / avg_lag1_diff 0.18984
---
## 10. Automation / 自动化
`example/run_all.py` runs all stages with config-driven paths.
`example/run_compare.py` can run a baseline vs temporal config and compute metric deltas.
---
## 11. Key Engineering Decisions / 关键工程决策
- Mixed-type diffusion: continuous + discrete split
- Two-stage training: temporal backbone first, diffusion on residuals
- Switchable backbone: GRU vs Transformer encoder for the diffusion model
- Positional + time embeddings for stability
- Optional inverse-variance weighting for continuous loss
- Log1p transforms for heavy-tailed signals
@@ -205,11 +219,12 @@ Metrics (with reference):
- KS may remain high → continuous distribution mismatch
- Lag1 may fluctuate → distribution vs temporal trade-off
- Continuous loss may dominate → needs careful weighting
- Transformer backbone may change stability; needs systematic comparison
---
## 14. Suggested Next Steps / 下一步建议
- Add **SNR-weighted loss** for stable diffusion training
- Compare GRU vs Transformer backbone using `run_compare.py`
- Explore **vprediction** for continuous branch
- Strengthen discrete diffusion (e.g., D3PM-style transitions)