This commit is contained in:
2026-01-22 20:42:10 +08:00
parent f37a8ce179
commit 382c756dfe
10 changed files with 310 additions and 55 deletions

View File

@@ -4,7 +4,7 @@
import csv
import gzip
import json
from typing import Dict, Iterable, List, Optional, Tuple
from typing import Dict, Iterable, List, Optional, Tuple, Union
@@ -13,15 +13,18 @@ def load_split(path: str) -> Dict[str, List[str]]:
return json.load(f)
def iter_rows(path: str) -> Iterable[Dict[str, str]]:
with gzip.open(path, "rt", newline="") as f:
reader = csv.DictReader(f)
for row in reader:
yield row
def iter_rows(path_or_paths: Union[str, List[str]]) -> Iterable[Dict[str, str]]:
paths = [path_or_paths] if isinstance(path_or_paths, str) else list(path_or_paths)
for path in paths:
opener = gzip.open if str(path).endswith(".gz") else open
with opener(path, "rt", newline="") as f:
reader = csv.DictReader(f)
for row in reader:
yield row
def compute_cont_stats(
path: str,
path: Union[str, List[str]],
cont_cols: List[str],
max_rows: Optional[int] = None,
) -> Tuple[Dict[str, float], Dict[str, float]]:
@@ -52,7 +55,7 @@ def compute_cont_stats(
def build_vocab(
path: str,
path: Union[str, List[str]],
disc_cols: List[str],
max_rows: Optional[int] = None,
) -> Dict[str, Dict[str, int]]:
@@ -80,7 +83,7 @@ def normalize_cont(x, cont_cols: List[str], mean: Dict[str, float], std: Dict[st
def windowed_batches(
path: str,
path: Union[str, List[str]],
cont_cols: List[str],
disc_cols: List[str],
vocab: Dict[str, Dict[str, int]],
@@ -89,10 +92,12 @@ def windowed_batches(
batch_size: int,
seq_len: int,
max_batches: Optional[int] = None,
return_file_id: bool = False,
):
import torch
batch_cont = []
batch_disc = []
batch_file = []
seq_cont = []
seq_disc = []
@@ -105,22 +110,34 @@ def windowed_batches(
seq_disc = []
batches_yielded = 0
for row in iter_rows(path):
cont_row = [float(row[c]) for c in cont_cols]
disc_row = [vocab[c].get(row[c], vocab[c]["<UNK>"]) for c in disc_cols]
seq_cont.append(cont_row)
seq_disc.append(disc_row)
if len(seq_cont) == seq_len:
flush_seq()
if len(batch_cont) == batch_size:
x_cont = torch.tensor(batch_cont, dtype=torch.float32)
x_disc = torch.tensor(batch_disc, dtype=torch.long)
x_cont = normalize_cont(x_cont, cont_cols, mean, std)
yield x_cont, x_disc
batch_cont = []
batch_disc = []
batches_yielded += 1
if max_batches is not None and batches_yielded >= max_batches:
return
paths = [path] if isinstance(path, str) else list(path)
for file_id, p in enumerate(paths):
for row in iter_rows(p):
cont_row = [float(row[c]) for c in cont_cols]
disc_row = [vocab[c].get(row[c], vocab[c]["<UNK>"]) for c in disc_cols]
seq_cont.append(cont_row)
seq_disc.append(disc_row)
if len(seq_cont) == seq_len:
flush_seq()
if return_file_id:
batch_file.append(file_id)
if len(batch_cont) == batch_size:
x_cont = torch.tensor(batch_cont, dtype=torch.float32)
x_disc = torch.tensor(batch_disc, dtype=torch.long)
x_cont = normalize_cont(x_cont, cont_cols, mean, std)
if return_file_id:
x_file = torch.tensor(batch_file, dtype=torch.long)
yield x_cont, x_disc, x_file
else:
yield x_cont, x_disc
batch_cont = []
batch_disc = []
batch_file = []
batches_yielded += 1
if max_batches is not None and batches_yielded >= max_batches:
return
# drop partial sequence at file boundary
seq_cont = []
seq_disc = []
# Drop last partial batch for simplicity