update new paper
This commit is contained in:
27
paper.md
27
paper.md
@@ -671,6 +671,33 @@ Table: Summary of benchmark metrics (three independent seeds).
|
||||

|
||||
Benchmark 综合图(流程、特征级分布保真、训练集分布漂移与跨种子鲁棒性)。
|
||||
|
||||

|
||||
跨三次独立运行的鲁棒性汇总图。
|
||||
|
||||

|
||||
KS 离群归因图(Top-K 误差特征与“移除最差特征后”的平均 KS 变化)。
|
||||
|
||||

|
||||
代表性高 KS 连续特征的 CDF 对齐:P1_B4002。
|
||||
|
||||

|
||||
P1_PIT02 的 CDF 对齐图。
|
||||
|
||||

|
||||
P1_FCV02Z 的 CDF 对齐图。
|
||||
|
||||

|
||||
P1_B3004 的 CDF 对齐图。
|
||||
|
||||

|
||||
所有连续特征的分布对比(经验 CDF 网格:生成 vs 原始)。
|
||||
|
||||

|
||||
离散特征的类别分布对比(点图:两种颜色分别代表生成与原始)。
|
||||
|
||||

|
||||
四个代表性特征的生成序列折线图(按真实 min/max 归一化)。
|
||||
|
||||
Why this benchmark highlights where the method helps
|
||||
To make the benchmark actionable (and comparable to prior work), we report type-appropriate, interpretable statistics instead of collapsing everything into a single similarity score. This matters in mixed-type ICS telemetry: continuous fidelity can be high while discrete semantics fail, and vice versa. By separating continuous (KS), discrete (JSD), and temporal (lag-1) views, the evaluation directly matches the design goals of the hybrid generator: distributional refinement for continuous residuals, vocabulary-valid reconstruction for discrete supervision, and trend-induced short-horizon coherence.
|
||||
为何该基准测试能够凸显方法优势
|
||||
|
||||
Reference in New Issue
Block a user