update new paper

This commit is contained in:
MZ YANG
2026-02-07 13:24:36 +08:00
parent d612d8e785
commit 7eee14ba2a
10 changed files with 15826 additions and 198 deletions

View File

@@ -671,6 +671,33 @@ Table: Summary of benchmark metrics (three independent seeds).
![Benchmark overview figure (workflow, feature fidelity, dataset shift, and robustness).](figures/benchmark_panel.svg)
Benchmark 综合图(流程、特征级分布保真、训练集分布漂移与跨种子鲁棒性)。
![Seed robustness summary across three independent runs.](figures/benchmark_metrics.svg)
跨三次独立运行的鲁棒性汇总图。
![KS outlier attribution (top-K features and average KS after removing worst features).](figures/ranked_ks.svg)
KS 离群归因图Top-K 误差特征与“移除最差特征后”的平均 KS 变化)。
![CDF alignment for a representative set of high-KS continuous features: P1_B4002, P1_PIT02, P1_FCV02Z, P1_B3004.](example/results/cdf_P1_B4002.svg)
代表性高 KS 连续特征的 CDF 对齐P1_B4002。
![CDF alignment for P1_PIT02.](example/results/cdf_P1_PIT02.svg)
P1_PIT02 的 CDF 对齐图。
![CDF alignment for P1_FCV02Z.](example/results/cdf_P1_FCV02Z.svg)
P1_FCV02Z 的 CDF 对齐图。
![CDF alignment for P1_B3004.](example/results/cdf_P1_B3004.svg)
P1_B3004 的 CDF 对齐图。
![All continuous features distribution comparison (empirical CDF grid: generated vs real).](figures/cdf_grid.svg)
所有连续特征的分布对比(经验 CDF 网格:生成 vs 原始)。
![Discrete features categorical distribution comparison (dot plot: generated vs real).](figures/disc_points.svg)
离散特征的类别分布对比(点图:两种颜色分别代表生成与原始)。
![Generated line series (normalized by real min/max) for four representative features: P1_B4002, P1_PIT02, P1_FCV02Z, P1_B3004.](figures/lines.svg)
四个代表性特征的生成序列折线图(按真实 min/max 归一化)。
Why this benchmark highlights where the method helps
To make the benchmark actionable (and comparable to prior work), we report type-appropriate, interpretable statistics instead of collapsing everything into a single similarity score. This matters in mixed-type ICS telemetry: continuous fidelity can be high while discrete semantics fail, and vice versa. By separating continuous (KS), discrete (JSD), and temporal (lag-1) views, the evaluation directly matches the design goals of the hybrid generator: distributional refinement for continuous residuals, vocabulary-valid reconstruction for discrete supervision, and trend-induced short-horizon coherence.
为何该基准测试能够凸显方法优势