Fix quantile transform scaling and document

This commit is contained in:
2026-01-27 19:27:00 +08:00
parent 80e91443d2
commit 9e1e7338a2
4 changed files with 15 additions and 5 deletions

View File

@@ -144,7 +144,7 @@ Defined in `example/data_utils.py` + `example/prepare_data.py`.
Key steps:
- Streaming mean/std/min/max + int-like detection
- Optional **log1p transform** for heavy-tailed continuous columns
- Optional **quantile transform** (TabDDPM-style) for continuous columns
- Optional **quantile transform** (TabDDPM-style) for continuous columns (skips extra standardization)
- Discrete vocab + most frequent token
- Windowed batching with **shuffle buffer**
@@ -160,7 +160,7 @@ Export process:
- Diffusion generates residuals
- Output: `trend + residual`
- De-normalize continuous values
- Inverse quantile transform (if enabled)
- Inverse quantile transform (if enabled; no extra de-standardization)
- Bound to observed min/max (clamp or sigmoid mapping)
- Restore discrete tokens from vocab
- Write to CSV