Add filtered KS diagnostics and feature-type plan
This commit is contained in:
@@ -14,6 +14,7 @@ Conventions:
|
||||
Tools:
|
||||
- `example/diagnose_ks.py` for per-feature KS + CDF plots.
|
||||
- `example/run_all_full.py` for one-command full pipeline + diagnostics.
|
||||
- `example/filtered_metrics.py` for filtered KS after removing collapsed/outlier features.
|
||||
Notes:
|
||||
- If `use_quantile_transform` is enabled, run `prepare_data.py` with `full_stats: true` to build quantile tables.
|
||||
|
||||
|
||||
@@ -78,3 +78,10 @@
|
||||
- **Files**:
|
||||
- `example/prepare_data.py`
|
||||
- `example/config.json`
|
||||
|
||||
## 2026-01-27 — Filtered KS for diagnostics
|
||||
- **Decision**: Add a filtered KS metric that excludes collapsed/outlier features.
|
||||
- **Why**: Avoid a handful of features dominating the aggregate KS while still reporting full KS.
|
||||
- **Files**:
|
||||
- `example/filtered_metrics.py`
|
||||
- `example/run_all_full.py`
|
||||
|
||||
@@ -14,3 +14,6 @@
|
||||
|
||||
## Discrete calibration
|
||||
- Hypothesis: post-hoc calibration on discrete marginals can reduce JSD without harming KS.
|
||||
|
||||
## Feature-type split modeling
|
||||
- Hypothesis: separate generation per feature type (setpoints, controllers, actuators, quantized, derived, aux) yields better overall fidelity.
|
||||
|
||||
Reference in New Issue
Block a user