update2
This commit is contained in:
@@ -12,7 +12,7 @@ from typing import Dict, List
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from data_utils import load_split
|
||||
from data_utils import load_split, inverse_quantile_transform
|
||||
from hybrid_diffusion import HybridDiffusionModel, TemporalGRUGenerator, cosine_beta_schedule
|
||||
from platform_utils import resolve_device, safe_path, ensure_dir, resolve_path
|
||||
|
||||
@@ -112,6 +112,8 @@ def main():
|
||||
int_like = stats.get("int_like", {})
|
||||
max_decimals = stats.get("max_decimals", {})
|
||||
transforms = stats.get("transform", {})
|
||||
quantile_probs = stats.get("quantile_probs")
|
||||
quantile_values = stats.get("quantile_values")
|
||||
|
||||
vocab_json = json.load(open(args.vocab_path, "r", encoding="utf-8"))
|
||||
vocab = vocab_json["vocab"]
|
||||
@@ -140,6 +142,8 @@ def main():
|
||||
raise SystemExit("use_condition enabled but no files matched data_glob: %s" % cfg_glob)
|
||||
cont_target = str(cfg.get("cont_target", "eps"))
|
||||
cont_clamp_x0 = float(cfg.get("cont_clamp_x0", 0.0))
|
||||
use_quantile = bool(cfg.get("use_quantile_transform", False))
|
||||
cont_bound_mode = str(cfg.get("cont_bound_mode", "clamp"))
|
||||
use_temporal_stage1 = bool(cfg.get("use_temporal_stage1", False))
|
||||
temporal_hidden_dim = int(cfg.get("temporal_hidden_dim", 256))
|
||||
temporal_num_layers = int(cfg.get("temporal_num_layers", 1))
|
||||
@@ -270,15 +274,21 @@ def main():
|
||||
mean_vec = torch.tensor([mean[c] for c in cont_cols], dtype=x_cont.dtype)
|
||||
std_vec = torch.tensor([std[c] for c in cont_cols], dtype=x_cont.dtype)
|
||||
x_cont = x_cont * std_vec + mean_vec
|
||||
if use_quantile:
|
||||
x_cont = inverse_quantile_transform(x_cont, cont_cols, quantile_probs, quantile_values)
|
||||
for i, c in enumerate(cont_cols):
|
||||
if transforms.get(c) == "log1p":
|
||||
x_cont[:, :, i] = torch.expm1(x_cont[:, :, i])
|
||||
# clamp to observed min/max per feature
|
||||
# bound to observed min/max per feature
|
||||
if vmin and vmax:
|
||||
for i, c in enumerate(cont_cols):
|
||||
lo = vmin.get(c, None)
|
||||
hi = vmax.get(c, None)
|
||||
if lo is not None and hi is not None:
|
||||
if lo is None or hi is None:
|
||||
continue
|
||||
if cont_bound_mode == "sigmoid":
|
||||
x_cont[:, :, i] = float(lo) + (float(hi) - float(lo)) * torch.sigmoid(x_cont[:, :, i])
|
||||
else:
|
||||
x_cont[:, :, i] = torch.clamp(x_cont[:, :, i], float(lo), float(hi))
|
||||
|
||||
header = read_header(data_path)
|
||||
|
||||
Reference in New Issue
Block a user