Update example and notes
This commit is contained in:
124
example/data_utils.py
Executable file
124
example/data_utils.py
Executable file
@@ -0,0 +1,124 @@
|
||||
#!/usr/bin/env python3
|
||||
"""Small utilities for HAI 21.03 data loading and feature encoding."""
|
||||
|
||||
import csv
|
||||
import gzip
|
||||
import json
|
||||
from typing import Dict, Iterable, List, Optional, Tuple
|
||||
|
||||
|
||||
|
||||
def load_split(path: str) -> Dict[str, List[str]]:
|
||||
with open(path, "r", encoding="ascii") as f:
|
||||
return json.load(f)
|
||||
|
||||
|
||||
def iter_rows(path: str) -> Iterable[Dict[str, str]]:
|
||||
with gzip.open(path, "rt", newline="") as f:
|
||||
reader = csv.DictReader(f)
|
||||
for row in reader:
|
||||
yield row
|
||||
|
||||
|
||||
def compute_cont_stats(
|
||||
path: str,
|
||||
cont_cols: List[str],
|
||||
max_rows: Optional[int] = None,
|
||||
) -> Tuple[Dict[str, float], Dict[str, float]]:
|
||||
"""Streaming mean/std (Welford)."""
|
||||
count = 0
|
||||
mean = {c: 0.0 for c in cont_cols}
|
||||
m2 = {c: 0.0 for c in cont_cols}
|
||||
|
||||
for i, row in enumerate(iter_rows(path)):
|
||||
count += 1
|
||||
for c in cont_cols:
|
||||
x = float(row[c])
|
||||
delta = x - mean[c]
|
||||
mean[c] += delta / count
|
||||
delta2 = x - mean[c]
|
||||
m2[c] += delta * delta2
|
||||
if max_rows is not None and i + 1 >= max_rows:
|
||||
break
|
||||
|
||||
std = {}
|
||||
for c in cont_cols:
|
||||
if count > 1:
|
||||
var = m2[c] / (count - 1)
|
||||
else:
|
||||
var = 0.0
|
||||
std[c] = var ** 0.5 if var > 0 else 1.0
|
||||
return mean, std
|
||||
|
||||
|
||||
def build_vocab(
|
||||
path: str,
|
||||
disc_cols: List[str],
|
||||
max_rows: Optional[int] = None,
|
||||
) -> Dict[str, Dict[str, int]]:
|
||||
values = {c: set() for c in disc_cols}
|
||||
for i, row in enumerate(iter_rows(path)):
|
||||
for c in disc_cols:
|
||||
values[c].add(row[c])
|
||||
if max_rows is not None and i + 1 >= max_rows:
|
||||
break
|
||||
|
||||
vocab = {}
|
||||
for c in disc_cols:
|
||||
tokens = sorted(values[c])
|
||||
vocab[c] = {tok: idx for idx, tok in enumerate(tokens)}
|
||||
return vocab
|
||||
|
||||
|
||||
def normalize_cont(x, cont_cols: List[str], mean: Dict[str, float], std: Dict[str, float]):
|
||||
import torch
|
||||
mean_t = torch.tensor([mean[c] for c in cont_cols], dtype=x.dtype, device=x.device)
|
||||
std_t = torch.tensor([std[c] for c in cont_cols], dtype=x.dtype, device=x.device)
|
||||
return (x - mean_t) / std_t
|
||||
|
||||
|
||||
def windowed_batches(
|
||||
path: str,
|
||||
cont_cols: List[str],
|
||||
disc_cols: List[str],
|
||||
vocab: Dict[str, Dict[str, int]],
|
||||
mean: Dict[str, float],
|
||||
std: Dict[str, float],
|
||||
batch_size: int,
|
||||
seq_len: int,
|
||||
max_batches: Optional[int] = None,
|
||||
):
|
||||
import torch
|
||||
batch_cont = []
|
||||
batch_disc = []
|
||||
seq_cont = []
|
||||
seq_disc = []
|
||||
|
||||
def flush_seq():
|
||||
nonlocal seq_cont, seq_disc, batch_cont, batch_disc
|
||||
if len(seq_cont) == seq_len:
|
||||
batch_cont.append(seq_cont)
|
||||
batch_disc.append(seq_disc)
|
||||
seq_cont = []
|
||||
seq_disc = []
|
||||
|
||||
batches_yielded = 0
|
||||
for row in iter_rows(path):
|
||||
cont_row = [float(row[c]) for c in cont_cols]
|
||||
disc_row = [vocab[c][row[c]] for c in disc_cols]
|
||||
seq_cont.append(cont_row)
|
||||
seq_disc.append(disc_row)
|
||||
if len(seq_cont) == seq_len:
|
||||
flush_seq()
|
||||
if len(batch_cont) == batch_size:
|
||||
x_cont = torch.tensor(batch_cont, dtype=torch.float32)
|
||||
x_disc = torch.tensor(batch_disc, dtype=torch.long)
|
||||
x_cont = normalize_cont(x_cont, cont_cols, mean, std)
|
||||
yield x_cont, x_disc
|
||||
batch_cont = []
|
||||
batch_disc = []
|
||||
batches_yielded += 1
|
||||
if max_batches is not None and batches_yielded >= max_batches:
|
||||
return
|
||||
|
||||
# Drop last partial batch for simplicity
|
||||
Reference in New Issue
Block a user