Add full quantile stats and post-hoc calibration

This commit is contained in:
2026-01-28 00:52:42 +08:00
parent 6d5c5fffb1
commit c68a6e3c97
9 changed files with 91 additions and 49 deletions

View File

@@ -14,3 +14,5 @@ Conventions:
Tools:
- `example/diagnose_ks.py` for per-feature KS + CDF plots.
- `example/run_all_full.py` for one-command full pipeline + diagnostics.
Notes:
- If `use_quantile_transform` is enabled, run `prepare_data.py` with `full_stats: true` to build quantile tables.

View File

@@ -62,3 +62,12 @@
- **Files**:
- `example/export_samples.py`
- `example/config.json`
## 2026-01-27 — Post-hoc quantile calibration
- **Decision**: Add optional post-hoc quantile calibration to align generated 1D CDFs with real data.
- **Why**: KS remained high with distribution shifts even after boundary fixes.
- **Files**:
- `example/data_utils.py`
- `example/export_samples.py`
- `example/prepare_data.py`
- `example/config.json`

View File

@@ -44,21 +44,11 @@
"cont_clamp_x0": 5.0,
"use_quantile_transform": true,
"quantile_bins": 1001,
"cont_bound_mode": "soft_tanh",
"cont_bound_mode": "none",
"cont_bound_strength": 2.0,
"cont_post_scale": {
"P1_B4002": 0.8,
"P1_B400B": 0.8,
"P1_FT02Z": 0.8,
"P1_PCV01D": 0.8,
"P1_PCV01Z": 0.8,
"P1_PCV02Z": 0.8,
"P2_24Vdc": 0.8,
"P2_MSD": 0.8,
"P3_LCP01D": 0.8,
"P4_ST_PT01": 0.8,
"P4_ST_TT01": 0.8
},
"cont_post_calibrate": true,
"cont_post_scale": {},
"full_stats": true,
"shuffle_buffer": 256,
"use_temporal_stage1": true,
"temporal_hidden_dim": 256,

View File

@@ -44,21 +44,11 @@
"cont_clamp_x0": 5.0,
"use_quantile_transform": true,
"quantile_bins": 1001,
"cont_bound_mode": "soft_tanh",
"cont_bound_mode": "none",
"cont_bound_strength": 2.0,
"cont_post_scale": {
"P1_B4002": 0.8,
"P1_B400B": 0.8,
"P1_FT02Z": 0.8,
"P1_PCV01D": 0.8,
"P1_PCV01Z": 0.8,
"P1_PCV02Z": 0.8,
"P2_24Vdc": 0.8,
"P2_MSD": 0.8,
"P3_LCP01D": 0.8,
"P4_ST_PT01": 0.8,
"P4_ST_TT01": 0.8
},
"cont_post_calibrate": true,
"cont_post_scale": {},
"full_stats": true,
"shuffle_buffer": 1024,
"use_temporal_stage1": false,
"sample_batch_size": 4,

View File

@@ -44,21 +44,11 @@
"cont_clamp_x0": 5.0,
"use_quantile_transform": true,
"quantile_bins": 1001,
"cont_bound_mode": "soft_tanh",
"cont_bound_mode": "none",
"cont_bound_strength": 2.0,
"cont_post_scale": {
"P1_B4002": 0.8,
"P1_B400B": 0.8,
"P1_FT02Z": 0.8,
"P1_PCV01D": 0.8,
"P1_PCV01Z": 0.8,
"P1_PCV02Z": 0.8,
"P2_24Vdc": 0.8,
"P2_MSD": 0.8,
"P3_LCP01D": 0.8,
"P4_ST_PT01": 0.8,
"P4_ST_TT01": 0.8
},
"cont_post_calibrate": true,
"cont_post_scale": {},
"full_stats": true,
"shuffle_buffer": 1024,
"use_temporal_stage1": true,
"temporal_hidden_dim": 512,

View File

@@ -153,12 +153,15 @@ def compute_cont_stats(
mean = {c: 0.0 for c in cont_cols}
m2 = {c: 0.0 for c in cont_cols}
quantile_values = {c: [] for c in cont_cols} if quantile_bins and quantile_bins > 1 else None
raw_quantile_values = {c: [] for c in cont_cols} if quantile_bins and quantile_bins > 1 else None
for i, row in enumerate(iter_rows(path)):
for c in cont_cols:
raw_val = row[c]
if raw_val is None or raw_val == "":
continue
x = float(raw_val)
if raw_quantile_values is not None:
raw_quantile_values[c].append(x)
if transforms.get(c) == "log1p":
if x < 0:
x = 0.0
@@ -184,14 +187,16 @@ def compute_cont_stats(
quantile_probs = None
quantile_table = None
raw_quantile_table = None
if quantile_values is not None:
quantile_probs = [i / (quantile_bins - 1) for i in range(quantile_bins)]
quantile_table = {}
raw_quantile_table = {}
for c in cont_cols:
vals = quantile_values[c]
if not vals:
quantile_table[c] = [0.0 for _ in quantile_probs]
continue
else:
vals.sort()
n = len(vals)
qvals = []
@@ -200,6 +205,18 @@ def compute_cont_stats(
idx = max(0, min(n - 1, idx))
qvals.append(float(vals[idx]))
quantile_table[c] = qvals
raw_vals = raw_quantile_values[c] if raw_quantile_values is not None else []
if not raw_vals:
raw_quantile_table[c] = [0.0 for _ in quantile_probs]
continue
raw_vals.sort()
n = len(raw_vals)
rqvals = []
for p in quantile_probs:
idx = int(round(p * (n - 1)))
idx = max(0, min(n - 1, idx))
rqvals.append(float(raw_vals[idx]))
raw_quantile_table[c] = rqvals
return {
"mean": mean,
@@ -216,6 +233,7 @@ def compute_cont_stats(
"max_rows": max_rows,
"quantile_probs": quantile_probs,
"quantile_values": quantile_table,
"quantile_raw_values": raw_quantile_table,
}
@@ -344,6 +362,35 @@ def inverse_quantile_transform(x, cont_cols, quantile_probs, quantile_values):
return x
def quantile_calibrate_to_real(x, cont_cols, quantile_probs, real_quantile_values):
import torch
probs_t = torch.tensor(quantile_probs, dtype=x.dtype, device=x.device)
flat = x.reshape(-1, x.size(-1))
for i, c in enumerate(cont_cols):
v = flat[:, i]
gen_q = torch.quantile(v, probs_t)
idx = torch.bucketize(v, gen_q)
idx = torch.clamp(idx, 1, gen_q.numel() - 1)
x0 = gen_q[idx - 1]
x1 = gen_q[idx]
p0 = probs_t[idx - 1]
p1 = probs_t[idx]
denom = torch.where((x1 - x0) == 0, torch.ones_like(x1 - x0), (x1 - x0))
p = p0 + (v - x0) * (p1 - p0) / denom
real_q = torch.tensor(real_quantile_values[c], dtype=x.dtype, device=x.device)
idx2 = torch.bucketize(p, probs_t)
idx2 = torch.clamp(idx2, 1, probs_t.numel() - 1)
rp0 = probs_t[idx2 - 1]
rp1 = probs_t[idx2]
r0 = real_q[idx2 - 1]
r1 = real_q[idx2]
denom2 = torch.where((rp1 - rp0) == 0, torch.ones_like(rp1 - rp0), (rp1 - rp0))
v2 = r0 + (p - rp0) * (r1 - r0) / denom2
flat[:, i] = v2
return flat.reshape(x.shape)
def windowed_batches(
path: Union[str, List[str]],
cont_cols: List[str],

View File

@@ -12,7 +12,7 @@ from typing import Dict, List
import torch
import torch.nn.functional as F
from data_utils import load_split, inverse_quantile_transform
from data_utils import load_split, inverse_quantile_transform, quantile_calibrate_to_real
from hybrid_diffusion import HybridDiffusionModel, TemporalGRUGenerator, cosine_beta_schedule
from platform_utils import resolve_device, safe_path, ensure_dir, resolve_path
@@ -114,6 +114,7 @@ def main():
transforms = stats.get("transform", {})
quantile_probs = stats.get("quantile_probs")
quantile_values = stats.get("quantile_values")
quantile_raw_values = stats.get("quantile_raw_values")
vocab_json = json.load(open(args.vocab_path, "r", encoding="utf-8"))
vocab = vocab_json["vocab"]
@@ -146,6 +147,7 @@ def main():
cont_bound_mode = str(cfg.get("cont_bound_mode", "clamp"))
cont_bound_strength = float(cfg.get("cont_bound_strength", 1.0))
cont_post_scale = cfg.get("cont_post_scale", {}) if isinstance(cfg.get("cont_post_scale", {}), dict) else {}
cont_post_calibrate = bool(cfg.get("cont_post_calibrate", False))
use_temporal_stage1 = bool(cfg.get("use_temporal_stage1", False))
temporal_hidden_dim = int(cfg.get("temporal_hidden_dim", 256))
temporal_num_layers = int(cfg.get("temporal_num_layers", 1))
@@ -282,6 +284,8 @@ def main():
for i, c in enumerate(cont_cols):
if transforms.get(c) == "log1p":
x_cont[:, :, i] = torch.expm1(x_cont[:, :, i])
if cont_post_calibrate and quantile_raw_values and quantile_probs:
x_cont = quantile_calibrate_to_real(x_cont, cont_cols, quantile_probs, quantile_raw_values)
# bound to observed min/max per feature
if vmin and vmax:
for i, c in enumerate(cont_cols):
@@ -291,6 +295,8 @@ def main():
continue
lo = float(lo)
hi = float(hi)
if cont_bound_mode == "none":
continue
if cont_bound_mode == "sigmoid":
x_cont[:, :, i] = lo + (hi - lo) * torch.sigmoid(x_cont[:, :, i])
elif cont_bound_mode == "soft_tanh":

View File

@@ -20,10 +20,15 @@ def main(max_rows: Optional[int] = None):
config_path = BASE_DIR / "config.json"
use_quantile = False
quantile_bins = None
full_stats = False
if config_path.exists():
cfg = json.loads(config_path.read_text(encoding="utf-8"))
use_quantile = bool(cfg.get("use_quantile_transform", False))
quantile_bins = int(cfg.get("quantile_bins", 0)) if use_quantile else None
full_stats = bool(cfg.get("full_stats", False))
if full_stats:
max_rows = None
split = load_split(safe_path(SPLIT_PATH))
time_col = split.get("time_column", "time")
@@ -62,6 +67,7 @@ def main(max_rows: Optional[int] = None):
"max_rows": cont_stats["max_rows"],
"quantile_probs": cont_stats["quantile_probs"],
"quantile_values": cont_stats["quantile_values"],
"quantile_raw_values": cont_stats["quantile_raw_values"],
},
f,
indent=2,

View File

@@ -145,6 +145,7 @@ Key steps:
- Streaming mean/std/min/max + int-like detection
- Optional **log1p transform** for heavy-tailed continuous columns
- Optional **quantile transform** (TabDDPM-style) for continuous columns (skips extra standardization)
- Optional **post-hoc quantile calibration** to align 1D CDFs after sampling
- Discrete vocab + most frequent token
- Windowed batching with **shuffle buffer**
@@ -161,7 +162,8 @@ Export process:
- Output: `trend + residual`
- De-normalize continuous values
- Inverse quantile transform (if enabled; no extra de-standardization)
- Bound to observed min/max (clamp or sigmoid mapping)
- Optional post-hoc quantile calibration (if enabled)
- Bound to observed min/max (clamp / sigmoid / soft_tanh / none)
- Restore discrete tokens from vocab
- Write to CSV