Add full quantile stats and post-hoc calibration
This commit is contained in:
@@ -14,3 +14,5 @@ Conventions:
|
||||
Tools:
|
||||
- `example/diagnose_ks.py` for per-feature KS + CDF plots.
|
||||
- `example/run_all_full.py` for one-command full pipeline + diagnostics.
|
||||
Notes:
|
||||
- If `use_quantile_transform` is enabled, run `prepare_data.py` with `full_stats: true` to build quantile tables.
|
||||
|
||||
@@ -62,3 +62,12 @@
|
||||
- **Files**:
|
||||
- `example/export_samples.py`
|
||||
- `example/config.json`
|
||||
|
||||
## 2026-01-27 — Post-hoc quantile calibration
|
||||
- **Decision**: Add optional post-hoc quantile calibration to align generated 1D CDFs with real data.
|
||||
- **Why**: KS remained high with distribution shifts even after boundary fixes.
|
||||
- **Files**:
|
||||
- `example/data_utils.py`
|
||||
- `example/export_samples.py`
|
||||
- `example/prepare_data.py`
|
||||
- `example/config.json`
|
||||
|
||||
@@ -44,21 +44,11 @@
|
||||
"cont_clamp_x0": 5.0,
|
||||
"use_quantile_transform": true,
|
||||
"quantile_bins": 1001,
|
||||
"cont_bound_mode": "soft_tanh",
|
||||
"cont_bound_mode": "none",
|
||||
"cont_bound_strength": 2.0,
|
||||
"cont_post_scale": {
|
||||
"P1_B4002": 0.8,
|
||||
"P1_B400B": 0.8,
|
||||
"P1_FT02Z": 0.8,
|
||||
"P1_PCV01D": 0.8,
|
||||
"P1_PCV01Z": 0.8,
|
||||
"P1_PCV02Z": 0.8,
|
||||
"P2_24Vdc": 0.8,
|
||||
"P2_MSD": 0.8,
|
||||
"P3_LCP01D": 0.8,
|
||||
"P4_ST_PT01": 0.8,
|
||||
"P4_ST_TT01": 0.8
|
||||
},
|
||||
"cont_post_calibrate": true,
|
||||
"cont_post_scale": {},
|
||||
"full_stats": true,
|
||||
"shuffle_buffer": 256,
|
||||
"use_temporal_stage1": true,
|
||||
"temporal_hidden_dim": 256,
|
||||
|
||||
@@ -44,21 +44,11 @@
|
||||
"cont_clamp_x0": 5.0,
|
||||
"use_quantile_transform": true,
|
||||
"quantile_bins": 1001,
|
||||
"cont_bound_mode": "soft_tanh",
|
||||
"cont_bound_mode": "none",
|
||||
"cont_bound_strength": 2.0,
|
||||
"cont_post_scale": {
|
||||
"P1_B4002": 0.8,
|
||||
"P1_B400B": 0.8,
|
||||
"P1_FT02Z": 0.8,
|
||||
"P1_PCV01D": 0.8,
|
||||
"P1_PCV01Z": 0.8,
|
||||
"P1_PCV02Z": 0.8,
|
||||
"P2_24Vdc": 0.8,
|
||||
"P2_MSD": 0.8,
|
||||
"P3_LCP01D": 0.8,
|
||||
"P4_ST_PT01": 0.8,
|
||||
"P4_ST_TT01": 0.8
|
||||
},
|
||||
"cont_post_calibrate": true,
|
||||
"cont_post_scale": {},
|
||||
"full_stats": true,
|
||||
"shuffle_buffer": 1024,
|
||||
"use_temporal_stage1": false,
|
||||
"sample_batch_size": 4,
|
||||
|
||||
@@ -44,21 +44,11 @@
|
||||
"cont_clamp_x0": 5.0,
|
||||
"use_quantile_transform": true,
|
||||
"quantile_bins": 1001,
|
||||
"cont_bound_mode": "soft_tanh",
|
||||
"cont_bound_mode": "none",
|
||||
"cont_bound_strength": 2.0,
|
||||
"cont_post_scale": {
|
||||
"P1_B4002": 0.8,
|
||||
"P1_B400B": 0.8,
|
||||
"P1_FT02Z": 0.8,
|
||||
"P1_PCV01D": 0.8,
|
||||
"P1_PCV01Z": 0.8,
|
||||
"P1_PCV02Z": 0.8,
|
||||
"P2_24Vdc": 0.8,
|
||||
"P2_MSD": 0.8,
|
||||
"P3_LCP01D": 0.8,
|
||||
"P4_ST_PT01": 0.8,
|
||||
"P4_ST_TT01": 0.8
|
||||
},
|
||||
"cont_post_calibrate": true,
|
||||
"cont_post_scale": {},
|
||||
"full_stats": true,
|
||||
"shuffle_buffer": 1024,
|
||||
"use_temporal_stage1": true,
|
||||
"temporal_hidden_dim": 512,
|
||||
|
||||
@@ -153,12 +153,15 @@ def compute_cont_stats(
|
||||
mean = {c: 0.0 for c in cont_cols}
|
||||
m2 = {c: 0.0 for c in cont_cols}
|
||||
quantile_values = {c: [] for c in cont_cols} if quantile_bins and quantile_bins > 1 else None
|
||||
raw_quantile_values = {c: [] for c in cont_cols} if quantile_bins and quantile_bins > 1 else None
|
||||
for i, row in enumerate(iter_rows(path)):
|
||||
for c in cont_cols:
|
||||
raw_val = row[c]
|
||||
if raw_val is None or raw_val == "":
|
||||
continue
|
||||
x = float(raw_val)
|
||||
if raw_quantile_values is not None:
|
||||
raw_quantile_values[c].append(x)
|
||||
if transforms.get(c) == "log1p":
|
||||
if x < 0:
|
||||
x = 0.0
|
||||
@@ -184,22 +187,36 @@ def compute_cont_stats(
|
||||
|
||||
quantile_probs = None
|
||||
quantile_table = None
|
||||
raw_quantile_table = None
|
||||
if quantile_values is not None:
|
||||
quantile_probs = [i / (quantile_bins - 1) for i in range(quantile_bins)]
|
||||
quantile_table = {}
|
||||
raw_quantile_table = {}
|
||||
for c in cont_cols:
|
||||
vals = quantile_values[c]
|
||||
if not vals:
|
||||
quantile_table[c] = [0.0 for _ in quantile_probs]
|
||||
else:
|
||||
vals.sort()
|
||||
n = len(vals)
|
||||
qvals = []
|
||||
for p in quantile_probs:
|
||||
idx = int(round(p * (n - 1)))
|
||||
idx = max(0, min(n - 1, idx))
|
||||
qvals.append(float(vals[idx]))
|
||||
quantile_table[c] = qvals
|
||||
raw_vals = raw_quantile_values[c] if raw_quantile_values is not None else []
|
||||
if not raw_vals:
|
||||
raw_quantile_table[c] = [0.0 for _ in quantile_probs]
|
||||
continue
|
||||
vals.sort()
|
||||
n = len(vals)
|
||||
qvals = []
|
||||
raw_vals.sort()
|
||||
n = len(raw_vals)
|
||||
rqvals = []
|
||||
for p in quantile_probs:
|
||||
idx = int(round(p * (n - 1)))
|
||||
idx = max(0, min(n - 1, idx))
|
||||
qvals.append(float(vals[idx]))
|
||||
quantile_table[c] = qvals
|
||||
rqvals.append(float(raw_vals[idx]))
|
||||
raw_quantile_table[c] = rqvals
|
||||
|
||||
return {
|
||||
"mean": mean,
|
||||
@@ -216,6 +233,7 @@ def compute_cont_stats(
|
||||
"max_rows": max_rows,
|
||||
"quantile_probs": quantile_probs,
|
||||
"quantile_values": quantile_table,
|
||||
"quantile_raw_values": raw_quantile_table,
|
||||
}
|
||||
|
||||
|
||||
@@ -344,6 +362,35 @@ def inverse_quantile_transform(x, cont_cols, quantile_probs, quantile_values):
|
||||
return x
|
||||
|
||||
|
||||
def quantile_calibrate_to_real(x, cont_cols, quantile_probs, real_quantile_values):
|
||||
import torch
|
||||
probs_t = torch.tensor(quantile_probs, dtype=x.dtype, device=x.device)
|
||||
flat = x.reshape(-1, x.size(-1))
|
||||
for i, c in enumerate(cont_cols):
|
||||
v = flat[:, i]
|
||||
gen_q = torch.quantile(v, probs_t)
|
||||
idx = torch.bucketize(v, gen_q)
|
||||
idx = torch.clamp(idx, 1, gen_q.numel() - 1)
|
||||
x0 = gen_q[idx - 1]
|
||||
x1 = gen_q[idx]
|
||||
p0 = probs_t[idx - 1]
|
||||
p1 = probs_t[idx]
|
||||
denom = torch.where((x1 - x0) == 0, torch.ones_like(x1 - x0), (x1 - x0))
|
||||
p = p0 + (v - x0) * (p1 - p0) / denom
|
||||
|
||||
real_q = torch.tensor(real_quantile_values[c], dtype=x.dtype, device=x.device)
|
||||
idx2 = torch.bucketize(p, probs_t)
|
||||
idx2 = torch.clamp(idx2, 1, probs_t.numel() - 1)
|
||||
rp0 = probs_t[idx2 - 1]
|
||||
rp1 = probs_t[idx2]
|
||||
r0 = real_q[idx2 - 1]
|
||||
r1 = real_q[idx2]
|
||||
denom2 = torch.where((rp1 - rp0) == 0, torch.ones_like(rp1 - rp0), (rp1 - rp0))
|
||||
v2 = r0 + (p - rp0) * (r1 - r0) / denom2
|
||||
flat[:, i] = v2
|
||||
return flat.reshape(x.shape)
|
||||
|
||||
|
||||
def windowed_batches(
|
||||
path: Union[str, List[str]],
|
||||
cont_cols: List[str],
|
||||
|
||||
@@ -12,7 +12,7 @@ from typing import Dict, List
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from data_utils import load_split, inverse_quantile_transform
|
||||
from data_utils import load_split, inverse_quantile_transform, quantile_calibrate_to_real
|
||||
from hybrid_diffusion import HybridDiffusionModel, TemporalGRUGenerator, cosine_beta_schedule
|
||||
from platform_utils import resolve_device, safe_path, ensure_dir, resolve_path
|
||||
|
||||
@@ -114,6 +114,7 @@ def main():
|
||||
transforms = stats.get("transform", {})
|
||||
quantile_probs = stats.get("quantile_probs")
|
||||
quantile_values = stats.get("quantile_values")
|
||||
quantile_raw_values = stats.get("quantile_raw_values")
|
||||
|
||||
vocab_json = json.load(open(args.vocab_path, "r", encoding="utf-8"))
|
||||
vocab = vocab_json["vocab"]
|
||||
@@ -146,6 +147,7 @@ def main():
|
||||
cont_bound_mode = str(cfg.get("cont_bound_mode", "clamp"))
|
||||
cont_bound_strength = float(cfg.get("cont_bound_strength", 1.0))
|
||||
cont_post_scale = cfg.get("cont_post_scale", {}) if isinstance(cfg.get("cont_post_scale", {}), dict) else {}
|
||||
cont_post_calibrate = bool(cfg.get("cont_post_calibrate", False))
|
||||
use_temporal_stage1 = bool(cfg.get("use_temporal_stage1", False))
|
||||
temporal_hidden_dim = int(cfg.get("temporal_hidden_dim", 256))
|
||||
temporal_num_layers = int(cfg.get("temporal_num_layers", 1))
|
||||
@@ -282,6 +284,8 @@ def main():
|
||||
for i, c in enumerate(cont_cols):
|
||||
if transforms.get(c) == "log1p":
|
||||
x_cont[:, :, i] = torch.expm1(x_cont[:, :, i])
|
||||
if cont_post_calibrate and quantile_raw_values and quantile_probs:
|
||||
x_cont = quantile_calibrate_to_real(x_cont, cont_cols, quantile_probs, quantile_raw_values)
|
||||
# bound to observed min/max per feature
|
||||
if vmin and vmax:
|
||||
for i, c in enumerate(cont_cols):
|
||||
@@ -291,6 +295,8 @@ def main():
|
||||
continue
|
||||
lo = float(lo)
|
||||
hi = float(hi)
|
||||
if cont_bound_mode == "none":
|
||||
continue
|
||||
if cont_bound_mode == "sigmoid":
|
||||
x_cont[:, :, i] = lo + (hi - lo) * torch.sigmoid(x_cont[:, :, i])
|
||||
elif cont_bound_mode == "soft_tanh":
|
||||
|
||||
@@ -20,10 +20,15 @@ def main(max_rows: Optional[int] = None):
|
||||
config_path = BASE_DIR / "config.json"
|
||||
use_quantile = False
|
||||
quantile_bins = None
|
||||
full_stats = False
|
||||
if config_path.exists():
|
||||
cfg = json.loads(config_path.read_text(encoding="utf-8"))
|
||||
use_quantile = bool(cfg.get("use_quantile_transform", False))
|
||||
quantile_bins = int(cfg.get("quantile_bins", 0)) if use_quantile else None
|
||||
full_stats = bool(cfg.get("full_stats", False))
|
||||
|
||||
if full_stats:
|
||||
max_rows = None
|
||||
|
||||
split = load_split(safe_path(SPLIT_PATH))
|
||||
time_col = split.get("time_column", "time")
|
||||
@@ -62,6 +67,7 @@ def main(max_rows: Optional[int] = None):
|
||||
"max_rows": cont_stats["max_rows"],
|
||||
"quantile_probs": cont_stats["quantile_probs"],
|
||||
"quantile_values": cont_stats["quantile_values"],
|
||||
"quantile_raw_values": cont_stats["quantile_raw_values"],
|
||||
},
|
||||
f,
|
||||
indent=2,
|
||||
|
||||
@@ -145,6 +145,7 @@ Key steps:
|
||||
- Streaming mean/std/min/max + int-like detection
|
||||
- Optional **log1p transform** for heavy-tailed continuous columns
|
||||
- Optional **quantile transform** (TabDDPM-style) for continuous columns (skips extra standardization)
|
||||
- Optional **post-hoc quantile calibration** to align 1D CDFs after sampling
|
||||
- Discrete vocab + most frequent token
|
||||
- Windowed batching with **shuffle buffer**
|
||||
|
||||
@@ -161,7 +162,8 @@ Export process:
|
||||
- Output: `trend + residual`
|
||||
- De-normalize continuous values
|
||||
- Inverse quantile transform (if enabled; no extra de-standardization)
|
||||
- Bound to observed min/max (clamp or sigmoid mapping)
|
||||
- Optional post-hoc quantile calibration (if enabled)
|
||||
- Bound to observed min/max (clamp / sigmoid / soft_tanh / none)
|
||||
- Restore discrete tokens from vocab
|
||||
- Write to CSV
|
||||
|
||||
|
||||
Reference in New Issue
Block a user