update新结构
This commit is contained in:
365
report.md
Normal file
365
report.md
Normal file
@@ -0,0 +1,365 @@
|
||||
# Hybrid Diffusion for ICS Traffic (HAI 21.03) — Project Report
|
||||
# 工业控制系统流量混合扩散生成(HAI 21.03)— 项目报告
|
||||
|
||||
## 1. Project Goal / 项目目标
|
||||
Build a **hybrid diffusion-based generator** for industrial control system (ICS) traffic features, targeting **mixed continuous + discrete** feature sequences. The output is **feature-level sequences**, not raw packets. The generator should preserve:
|
||||
- **Distributional fidelity** (continuous value ranges and discrete frequencies)
|
||||
- **Temporal consistency** (time correlation and sequence structure)
|
||||
- **Protocol/field consistency** (for discrete fields)
|
||||
|
||||
构建一个用于工业控制系统(ICS)流量特征的**混合扩散生成模型**,面向**连续+离散混合特征序列**。输出为**特征级序列**而非原始报文。生成结果需要同时保持:
|
||||
- **分布一致性**(连续值范围与离散取值频率)
|
||||
- **时序一致性**(时间相关性与序列结构)
|
||||
- **字段/协议一致性**(离散字段的逻辑一致)
|
||||
|
||||
This project is aligned with the STOUTER idea of **structure-aware diffusion** for spatiotemporal data, but applied to **ICS feature sequences** rather than cellular traffic.
|
||||
|
||||
本项目呼应 STOUTER 的**结构先验+扩散**思想,但应用于**ICS 特征序列**而非蜂窝流量。
|
||||
|
||||
---
|
||||
|
||||
## 2. Data and Scope / 数据与范围
|
||||
**Dataset used in the current implementation:** HAI 21.03 (CSV feature traces)
|
||||
|
||||
**当前实现使用的数据集:** HAI 21.03(CSV 特征序列)
|
||||
|
||||
**Data location (default in config):**
|
||||
- `dataset/hai/hai-21.03/train*.csv.gz`
|
||||
|
||||
**数据位置(config 默认):**
|
||||
- `dataset/hai/hai-21.03/train*.csv.gz`
|
||||
|
||||
**Feature split (fixed schema):**
|
||||
- Defined in `example/feature_split.json`
|
||||
- **Continuous features:** sensor/process values
|
||||
- **Discrete features:** binary/low-cardinality status/flag fields
|
||||
- `time` column is excluded from modeling
|
||||
|
||||
**特征拆分(固定 schema):**
|
||||
- `example/feature_split.json`
|
||||
- **连续特征:** 传感器/过程值
|
||||
- **离散特征:** 二值/低基数状态字段
|
||||
- `time` 列不参与训练
|
||||
|
||||
---
|
||||
|
||||
## 3. End-to-End Pipeline / 端到端流程
|
||||
|
||||
**One command pipeline:**
|
||||
```
|
||||
python example/run_all.py --device cuda
|
||||
```
|
||||
|
||||
**一键流程:**
|
||||
```
|
||||
python example/run_all.py --device cuda
|
||||
```
|
||||
|
||||
### Pipeline stages / 流程阶段
|
||||
1) **Prepare data** (`example/prepare_data.py`)
|
||||
2) **Train model** (`example/train.py`)
|
||||
3) **Generate samples** (`example/export_samples.py`)
|
||||
4) **Evaluate** (`example/evaluate_generated.py`)
|
||||
5) **Summarize metrics** (`example/summary_metrics.py`)
|
||||
|
||||
1) **数据准备**(统计量与词表)
|
||||
2) **训练模型**
|
||||
3) **生成样本并导出**
|
||||
4) **评估指标**
|
||||
5) **汇总指标**
|
||||
|
||||
---
|
||||
|
||||
## 4. Technical Architecture / 技术架构
|
||||
|
||||
### 4.1 Hybrid Diffusion Model (Core) / 混合扩散模型(核心)
|
||||
Defined in `example/hybrid_diffusion.py`.
|
||||
|
||||
**Key components:**
|
||||
- **Continuous branch**: Gaussian diffusion (DDPM style)
|
||||
- **Discrete branch**: Mask diffusion for categorical tokens
|
||||
- **Shared backbone**: GRU + residual MLP + LayerNorm
|
||||
- **Embedding inputs**:
|
||||
- continuous projection
|
||||
- discrete embeddings per column
|
||||
- time embedding (sinusoidal)
|
||||
- positional embedding (sequence index)
|
||||
- optional condition embedding (`file_id`)
|
||||
|
||||
**Outputs:**
|
||||
- Continuous head: predicts target (`eps`, `x0`, or `v`)
|
||||
- Discrete heads: predict logits for each discrete column
|
||||
|
||||
**核心组成:**
|
||||
- **连续分支:** 高斯扩散(DDPM)
|
||||
- **离散分支:** Mask 扩散
|
||||
- **共享主干:** GRU + 残差 MLP + LayerNorm
|
||||
- **输入嵌入:**
|
||||
- 连续投影
|
||||
- 离散字段嵌入
|
||||
- 时间嵌入(正弦)
|
||||
- 位置嵌入(序列索引)
|
||||
- 条件嵌入(可选,`file_id`)
|
||||
|
||||
**输出:**
|
||||
- 连续 head:预测 `eps/x0/v`
|
||||
- 离散 head:各字段 logits
|
||||
|
||||
---
|
||||
|
||||
### 4.2 Feature Graph Mixer (Structure Prior) / 特征图混合器(结构先验)
|
||||
Implemented in `example/hybrid_diffusion.py` as `FeatureGraphMixer`.
|
||||
|
||||
Purpose: inject **learnable feature-dependency prior** without dataset-specific hardcoding.
|
||||
|
||||
**Mechanism:**
|
||||
- Learns a dense feature relation matrix `A`
|
||||
- Applies: `x + x @ A`
|
||||
- Symmetric stabilizing constraint: `(A + A^T)/2`
|
||||
- Controlled by scale and dropout
|
||||
|
||||
**Config:**
|
||||
```
|
||||
"model_use_feature_graph": true,
|
||||
"feature_graph_scale": 0.1,
|
||||
"feature_graph_dropout": 0.0
|
||||
```
|
||||
|
||||
**目的:**在不写死特定数据集关系的情况下,引入**可学习特征依赖先验**。
|
||||
|
||||
**机制:**
|
||||
- 学习稠密关系矩阵 `A`
|
||||
- 特征混合:`x + x @ A`
|
||||
- 对称化稳定:`(A + A^T)/2`
|
||||
- 通过 scale/dropout 控制强度
|
||||
|
||||
---
|
||||
|
||||
### 4.3 Two-Stage Temporal Backbone / 两阶段时序骨干
|
||||
Stage-1 uses a **GRU temporal generator** to model sequence trend in normalized space. Stage-2 diffusion then models the **residual** (x − trend). This decouples temporal consistency from distribution alignment.
|
||||
|
||||
第一阶段使用 **GRU 时序生成器**在归一化空间建模序列趋势;第二阶段扩散模型学习**残差**(x − trend),实现时序一致性与分布对齐的解耦。
|
||||
|
||||
---
|
||||
|
||||
## 5. Diffusion Formulations / 扩散建模形式
|
||||
|
||||
### 5.1 Continuous Diffusion / 连续扩散
|
||||
Forward process:
|
||||
```
|
||||
x_t = sqrt(a_bar_t) * x_0 + sqrt(1 - a_bar_t) * eps
|
||||
```
|
||||
|
||||
Targets supported:
|
||||
- **eps prediction** (standard DDPM)
|
||||
- **x0 prediction** (direct reconstruction)
|
||||
- **v prediction** (v = sqrt(a_bar)*eps − sqrt(1-a_bar)*x0)
|
||||
|
||||
Current config default:
|
||||
```
|
||||
"cont_target": "v"
|
||||
```
|
||||
|
||||
Sampling uses the target to reconstruct `eps` and apply standard DDPM reverse update.
|
||||
|
||||
**前向扩散:**如上公式。
|
||||
|
||||
**支持的目标:**
|
||||
- `eps`(噪声预测)
|
||||
- `x0`(原样本预测)
|
||||
- `v`(v‑prediction)
|
||||
|
||||
**当前默认:**`cont_target = v`
|
||||
|
||||
**采样:**根据目标反解 `eps` 再执行标准 DDPM 反向步骤。
|
||||
|
||||
---
|
||||
|
||||
### 5.2 Discrete Diffusion (Mask) / 离散扩散(Mask)
|
||||
Forward process: replace tokens with `[MASK]` using cosine schedule:
|
||||
```
|
||||
p(t) = 0.5 * (1 - cos(pi * t / T))
|
||||
```
|
||||
Optional scale: `disc_mask_scale`
|
||||
|
||||
Reverse process: cross-entropy on masked positions only.
|
||||
|
||||
**前向:**按 cosine schedule 进行 Mask。
|
||||
**反向:**仅在 mask 位置计算交叉熵。
|
||||
|
||||
---
|
||||
|
||||
## 6. Loss Design (Current) / 当前损失设计
|
||||
Total loss:
|
||||
```
|
||||
L = λ * L_cont + (1 − λ) * L_disc + w_q * L_quantile
|
||||
```
|
||||
|
||||
### 6.1 Continuous Loss / 连续损失
|
||||
Depending on `cont_target`:
|
||||
- eps target: MSE(eps_pred, eps)
|
||||
- x0 target: MSE(x0_pred, x0)
|
||||
- v target: MSE(v_pred, v_target)
|
||||
|
||||
Optional inverse-variance weighting:
|
||||
```
|
||||
cont_loss_weighting = "inv_std"
|
||||
```
|
||||
|
||||
### 6.2 Discrete Loss / 离散损失
|
||||
Cross-entropy on masked positions only.
|
||||
|
||||
### 6.3 Quantile Loss (Distribution Alignment) / 分位数损失(分布对齐)
|
||||
Added to improve KS (distribution shape alignment):
|
||||
- Compute quantiles on generated vs real x0
|
||||
- Loss = Huber or L1 difference on quantiles
|
||||
|
||||
Stabilization:
|
||||
```
|
||||
quantile_loss_warmup_steps
|
||||
quantile_loss_clip
|
||||
quantile_loss_huber_delta
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 7. Training Strategy / 训练策略
|
||||
Defined in `example/train.py`.
|
||||
|
||||
**Key techniques:**
|
||||
- EMA of model weights
|
||||
- Gradient clipping
|
||||
- Shuffle buffer to reduce batch bias
|
||||
- Optional feature graph prior
|
||||
- Quantile loss warmup for stability
|
||||
- Optional stage-1 temporal GRU (trend) + residual diffusion
|
||||
|
||||
**Config highlights (example/config.json):**
|
||||
```
|
||||
timesteps: 600
|
||||
batch_size: 128
|
||||
seq_len: 128
|
||||
epochs: 10
|
||||
max_batches: 4000
|
||||
lambda: 0.7
|
||||
cont_target: "v"
|
||||
quantile_loss_weight: 0.1
|
||||
model_use_feature_graph: true
|
||||
use_temporal_stage1: true
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 8. Sampling & Export / 采样与导出
|
||||
Defined in:
|
||||
- `example/sample.py`
|
||||
- `example/export_samples.py`
|
||||
|
||||
**Export steps:**
|
||||
- Reverse diffusion with conditional sampling
|
||||
- Reverse normalize continuous values
|
||||
- Clamp to observed min/max
|
||||
- Restore discrete tokens from vocab
|
||||
- Write to CSV
|
||||
|
||||
---
|
||||
|
||||
## 9. Evaluation Metrics / 评估指标
|
||||
Implemented in `example/evaluate_generated.py`.
|
||||
|
||||
### Continuous Metrics / 连续指标
|
||||
- **KS statistic** (distribution similarity per feature)
|
||||
- **Quantile errors** (q05/q25/q50/q75/q95)
|
||||
- **Lag‑1 correlation diff** (temporal structure)
|
||||
|
||||
### Discrete Metrics / 离散指标
|
||||
- **JSD** over token frequency distribution
|
||||
- **Invalid token counts**
|
||||
|
||||
### Summary Metrics / 汇总指标
|
||||
Auto-logged in:
|
||||
- `example/results/metrics_history.csv`
|
||||
- via `example/summary_metrics.py`
|
||||
|
||||
---
|
||||
|
||||
## 10. Automation / 自动化
|
||||
|
||||
### One‑click pipeline / 一键流程
|
||||
```
|
||||
python example/run_all.py --device cuda
|
||||
```
|
||||
|
||||
### Metrics logging / 指标记录
|
||||
Each run appends:
|
||||
```
|
||||
timestamp,avg_ks,avg_jsd,avg_lag1_diff
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 11. Key Engineering Decisions / 关键工程决策
|
||||
|
||||
### 11.1 Mixed-Type Diffusion / 混合类型扩散
|
||||
Continuous + discrete handled separately to respect data types.
|
||||
|
||||
### 11.2 Structure Prior / 结构先验
|
||||
Learnable feature graph added to encode implicit dependencies.
|
||||
|
||||
### 11.3 v‑prediction
|
||||
Chosen to stabilize training and improve convergence in diffusion.
|
||||
|
||||
### 11.4 Distribution Alignment / 分布对齐
|
||||
Quantile loss introduced to directly reduce KS.
|
||||
|
||||
---
|
||||
|
||||
## 12. Known Issues / Current Limitations / 已知问题与当前局限
|
||||
- **KS remains high** in many experiments, meaning continuous distributions are still misaligned.
|
||||
- **Lag‑1 may degrade** when quantile loss is too strong.
|
||||
- **Loss spikes** observed when quantile loss is unstable (mitigated with warmup + clip + Huber).
|
||||
|
||||
**当前问题:**
|
||||
- KS 高,说明连续分布仍未对齐
|
||||
- 分位数损失过强时会损害时序相关性
|
||||
- 分位数损失不稳定时会出现 loss 爆炸(已引入 warmup/clip/Huber)
|
||||
|
||||
---
|
||||
|
||||
## 13. Suggested Next Steps (Research Roadmap) / 下一步建议(研究路线)
|
||||
1) **SNR-weighted loss** (improve stability across timesteps)
|
||||
2) **Two-stage training** (distribution first, temporal consistency second)
|
||||
3) **Upgrade discrete diffusion** (D3PM-style transitions)
|
||||
4) **Structured conditioning** (state/phase conditioning)
|
||||
5) **Graph-based priors** (explicit feature/plant dependency graphs)
|
||||
|
||||
---
|
||||
|
||||
## 14. Code Map (Key Files) / 代码索引(关键文件)
|
||||
|
||||
**Core model**
|
||||
- `example/hybrid_diffusion.py`
|
||||
|
||||
**Training**
|
||||
- `example/train.py`
|
||||
|
||||
**Sampling & export**
|
||||
- `example/sample.py`
|
||||
- `example/export_samples.py`
|
||||
|
||||
**Pipeline**
|
||||
- `example/run_all.py`
|
||||
|
||||
**Evaluation**
|
||||
- `example/evaluate_generated.py`
|
||||
- `example/summary_metrics.py`
|
||||
|
||||
**Configs**
|
||||
- `example/config.json`
|
||||
|
||||
---
|
||||
|
||||
## 15. Summary / 总结
|
||||
This project implements a **hybrid diffusion model for ICS traffic features**, combining continuous Gaussian diffusion with discrete mask diffusion, enhanced with a **learnable feature-graph prior**. The system includes a full pipeline for preparation, training, sampling, exporting, and evaluation. Key research challenges remain in **distribution alignment (KS)** and **joint optimization of distribution fidelity vs temporal consistency**, motivating future improvements such as SNR-weighted loss, staged training, and stronger structural priors.
|
||||
|
||||
本项目实现了用于 ICS 流量特征的**混合扩散模型**,将连续高斯扩散与离散 Mask 扩散结合,并引入**可学习特征图先验**。系统包含完整的数据准备、训练、采样、导出与评估流程。当前研究挑战集中在**连续分布对齐(KS)**与**分布/时序一致性之间的权衡**,后续可通过 SNR‑weighted loss、分阶段训练与更强结构先验继续改进。
|
||||
Reference in New Issue
Block a user