back
This commit is contained in:
@@ -72,3 +72,4 @@ python example/run_pipeline.py --device auto
|
||||
- The script only samples the first 5000 rows to stay fast.
|
||||
- `prepare_data.py` runs without PyTorch, but `train.py` and `sample.py` require it.
|
||||
- `train.py` and `sample.py` auto-select GPU if available; otherwise they fall back to CPU.
|
||||
- Optional two-stage temporal model (`use_temporal_stage1`) trains a GRU trend backbone first, then diffusion models residuals.
|
||||
|
||||
@@ -38,6 +38,12 @@
|
||||
"cont_target": "x0",
|
||||
"cont_clamp_x0": 5.0,
|
||||
"shuffle_buffer": 256,
|
||||
"use_temporal_stage1": true,
|
||||
"temporal_hidden_dim": 256,
|
||||
"temporal_num_layers": 1,
|
||||
"temporal_dropout": 0.0,
|
||||
"temporal_epochs": 2,
|
||||
"temporal_lr": 0.001,
|
||||
"sample_batch_size": 8,
|
||||
"sample_seq_len": 128
|
||||
}
|
||||
|
||||
@@ -13,7 +13,7 @@ import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from data_utils import load_split
|
||||
from hybrid_diffusion import HybridDiffusionModel, cosine_beta_schedule
|
||||
from hybrid_diffusion import HybridDiffusionModel, TemporalGRUGenerator, cosine_beta_schedule
|
||||
from platform_utils import resolve_device, safe_path, ensure_dir, resolve_path
|
||||
|
||||
|
||||
@@ -140,6 +140,10 @@ def main():
|
||||
raise SystemExit("use_condition enabled but no files matched data_glob: %s" % cfg_glob)
|
||||
cont_target = str(cfg.get("cont_target", "eps"))
|
||||
cont_clamp_x0 = float(cfg.get("cont_clamp_x0", 0.0))
|
||||
use_temporal_stage1 = bool(cfg.get("use_temporal_stage1", False))
|
||||
temporal_hidden_dim = int(cfg.get("temporal_hidden_dim", 256))
|
||||
temporal_num_layers = int(cfg.get("temporal_num_layers", 1))
|
||||
temporal_dropout = float(cfg.get("temporal_dropout", 0.0))
|
||||
|
||||
model = HybridDiffusionModel(
|
||||
cont_dim=len(cont_cols),
|
||||
@@ -163,6 +167,20 @@ def main():
|
||||
model.load_state_dict(torch.load(args.model_path, map_location=device, weights_only=True))
|
||||
model.eval()
|
||||
|
||||
temporal_model = None
|
||||
if use_temporal_stage1:
|
||||
temporal_model = TemporalGRUGenerator(
|
||||
input_dim=len(cont_cols),
|
||||
hidden_dim=temporal_hidden_dim,
|
||||
num_layers=temporal_num_layers,
|
||||
dropout=temporal_dropout,
|
||||
).to(device)
|
||||
temporal_path = Path(args.model_path).with_name("temporal.pt")
|
||||
if not temporal_path.exists():
|
||||
raise SystemExit(f"missing temporal model file: {temporal_path}")
|
||||
temporal_model.load_state_dict(torch.load(temporal_path, map_location=device, weights_only=True))
|
||||
temporal_model.eval()
|
||||
|
||||
betas = cosine_beta_schedule(args.timesteps).to(device)
|
||||
alphas = 1.0 - betas
|
||||
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
||||
@@ -189,6 +207,10 @@ def main():
|
||||
cond_id = torch.full((args.batch_size,), int(args.condition_id), device=device, dtype=torch.long)
|
||||
cond = cond_id
|
||||
|
||||
trend = None
|
||||
if temporal_model is not None:
|
||||
trend = temporal_model.generate(args.batch_size, args.seq_len, device)
|
||||
|
||||
for t in reversed(range(args.timesteps)):
|
||||
t_batch = torch.full((args.batch_size,), t, device=device, dtype=torch.long)
|
||||
eps_pred, logits = model(x_cont, x_disc, t_batch, cond)
|
||||
@@ -225,6 +247,8 @@ def main():
|
||||
)
|
||||
x_disc[:, :, i][mask] = sampled[mask]
|
||||
|
||||
if trend is not None:
|
||||
x_cont = x_cont + trend
|
||||
# move to CPU for export
|
||||
x_cont = x_cont.cpu()
|
||||
x_disc = x_disc.cpu()
|
||||
|
||||
@@ -66,6 +66,46 @@ class SinusoidalTimeEmbedding(nn.Module):
|
||||
return emb
|
||||
|
||||
|
||||
class TemporalGRUGenerator(nn.Module):
|
||||
"""Stage-1 temporal generator for sequence trend."""
|
||||
|
||||
def __init__(self, input_dim: int, hidden_dim: int = 256, num_layers: int = 1, dropout: float = 0.0):
|
||||
super().__init__()
|
||||
self.start_token = nn.Parameter(torch.zeros(input_dim))
|
||||
self.gru = nn.GRU(
|
||||
input_dim,
|
||||
hidden_dim,
|
||||
num_layers=num_layers,
|
||||
dropout=dropout if num_layers > 1 else 0.0,
|
||||
batch_first=True,
|
||||
)
|
||||
self.out = nn.Linear(hidden_dim, input_dim)
|
||||
|
||||
def forward_teacher(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Teacher-forced next-step prediction. Returns trend sequence and preds."""
|
||||
if x.size(1) < 2:
|
||||
raise ValueError("sequence length must be >= 2 for teacher forcing")
|
||||
inp = x[:, :-1, :]
|
||||
out, _ = self.gru(inp)
|
||||
pred_next = self.out(out)
|
||||
trend = torch.zeros_like(x)
|
||||
trend[:, 0, :] = x[:, 0, :]
|
||||
trend[:, 1:, :] = pred_next
|
||||
return trend, pred_next
|
||||
|
||||
def generate(self, batch_size: int, seq_len: int, device: torch.device) -> torch.Tensor:
|
||||
"""Autoregressively generate a backbone sequence."""
|
||||
h = None
|
||||
prev = self.start_token.unsqueeze(0).expand(batch_size, -1).to(device)
|
||||
outputs = []
|
||||
for _ in range(seq_len):
|
||||
out, h = self.gru(prev.unsqueeze(1), h)
|
||||
nxt = self.out(out.squeeze(1))
|
||||
outputs.append(nxt.unsqueeze(1))
|
||||
prev = nxt
|
||||
return torch.cat(outputs, dim=1)
|
||||
|
||||
|
||||
class HybridDiffusionModel(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
|
||||
@@ -75,6 +75,8 @@ def main():
|
||||
run([sys.executable, str(base_dir / "evaluate_generated.py"), "--reference", str(ref)])
|
||||
else:
|
||||
run([sys.executable, str(base_dir / "evaluate_generated.py")])
|
||||
run([sys.executable, str(base_dir / "summary_metrics.py")])
|
||||
run([sys.executable, str(base_dir / "summary_metrics.py")])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -10,7 +10,7 @@ import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from data_utils import load_split
|
||||
from hybrid_diffusion import HybridDiffusionModel, cosine_beta_schedule
|
||||
from hybrid_diffusion import HybridDiffusionModel, TemporalGRUGenerator, cosine_beta_schedule
|
||||
from platform_utils import resolve_device, safe_path, ensure_dir
|
||||
|
||||
BASE_DIR = Path(__file__).resolve().parent
|
||||
@@ -47,6 +47,10 @@ def main():
|
||||
cond_dim = int(cfg.get("cond_dim", 32))
|
||||
use_tanh_eps = bool(cfg.get("use_tanh_eps", False))
|
||||
eps_scale = float(cfg.get("eps_scale", 1.0))
|
||||
use_temporal_stage1 = bool(cfg.get("use_temporal_stage1", False))
|
||||
temporal_hidden_dim = int(cfg.get("temporal_hidden_dim", 256))
|
||||
temporal_num_layers = int(cfg.get("temporal_num_layers", 1))
|
||||
temporal_dropout = float(cfg.get("temporal_dropout", 0.0))
|
||||
cont_target = str(cfg.get("cont_target", "eps"))
|
||||
cont_clamp_x0 = float(cfg.get("cont_clamp_x0", 0.0))
|
||||
model_time_dim = int(cfg.get("model_time_dim", 64))
|
||||
@@ -92,6 +96,20 @@ def main():
|
||||
model.load_state_dict(torch.load(str(MODEL_PATH), map_location=DEVICE, weights_only=True))
|
||||
model.eval()
|
||||
|
||||
temporal_model = None
|
||||
if use_temporal_stage1:
|
||||
temporal_model = TemporalGRUGenerator(
|
||||
input_dim=len(cont_cols),
|
||||
hidden_dim=temporal_hidden_dim,
|
||||
num_layers=temporal_num_layers,
|
||||
dropout=temporal_dropout,
|
||||
).to(DEVICE)
|
||||
temporal_path = BASE_DIR / "results" / "temporal.pt"
|
||||
if not temporal_path.exists():
|
||||
raise SystemExit(f"missing temporal model file: {temporal_path}")
|
||||
temporal_model.load_state_dict(torch.load(str(temporal_path), map_location=DEVICE, weights_only=True))
|
||||
temporal_model.eval()
|
||||
|
||||
betas = cosine_beta_schedule(timesteps).to(DEVICE)
|
||||
alphas = 1.0 - betas
|
||||
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
||||
@@ -110,6 +128,10 @@ def main():
|
||||
raise SystemExit("use_condition enabled but no files matched data_glob")
|
||||
cond = torch.randint(0, cond_vocab_size, (batch_size,), device=DEVICE, dtype=torch.long)
|
||||
|
||||
trend = None
|
||||
if temporal_model is not None:
|
||||
trend = temporal_model.generate(batch_size, seq_len, DEVICE)
|
||||
|
||||
for t in reversed(range(timesteps)):
|
||||
t_batch = torch.full((batch_size,), t, device=DEVICE, dtype=torch.long)
|
||||
eps_pred, logits = model(x_cont, x_disc, t_batch, cond)
|
||||
@@ -146,6 +168,8 @@ def main():
|
||||
sampled = torch.multinomial(probs.view(-1, probs.size(-1)), 1).view(BATCH_SIZE, SEQ_LEN)
|
||||
x_disc[:, :, i][mask] = sampled[mask]
|
||||
|
||||
if trend is not None:
|
||||
x_cont = x_cont + trend
|
||||
print("sampled_cont_shape", tuple(x_cont.shape))
|
||||
print("sampled_disc_shape", tuple(x_disc.shape))
|
||||
|
||||
|
||||
63
example/summary_metrics.py
Normal file
63
example/summary_metrics.py
Normal file
@@ -0,0 +1,63 @@
|
||||
#!/usr/bin/env python3
|
||||
"""Print average metrics from eval.json and compare with previous run."""
|
||||
|
||||
import json
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def mean(values):
|
||||
return sum(values) / len(values) if values else None
|
||||
|
||||
|
||||
def parse_last_row(history_path: Path):
|
||||
if not history_path.exists():
|
||||
return None
|
||||
rows = history_path.read_text(encoding="utf-8").strip().splitlines()
|
||||
if len(rows) < 2:
|
||||
return None
|
||||
last = rows[-1].split(",")
|
||||
if len(last) < 4:
|
||||
return None
|
||||
return {
|
||||
"avg_ks": float(last[1]),
|
||||
"avg_jsd": float(last[2]),
|
||||
"avg_lag1_diff": float(last[3]),
|
||||
}
|
||||
|
||||
|
||||
def main():
|
||||
base_dir = Path(__file__).resolve().parent
|
||||
eval_path = base_dir / "results" / "eval.json"
|
||||
if not eval_path.exists():
|
||||
raise SystemExit(f"missing eval.json: {eval_path}")
|
||||
|
||||
obj = json.loads(eval_path.read_text(encoding="utf-8"))
|
||||
ks = list(obj.get("continuous_ks", {}).values())
|
||||
jsd = list(obj.get("discrete_jsd", {}).values())
|
||||
lag = list(obj.get("continuous_lag1_diff", {}).values())
|
||||
|
||||
avg_ks = mean(ks)
|
||||
avg_jsd = mean(jsd)
|
||||
avg_lag1 = mean(lag)
|
||||
|
||||
history_path = base_dir / "results" / "metrics_history.csv"
|
||||
prev = parse_last_row(history_path)
|
||||
|
||||
if not history_path.exists():
|
||||
history_path.write_text("timestamp,avg_ks,avg_jsd,avg_lag1_diff\n", encoding="utf-8")
|
||||
with history_path.open("a", encoding="utf-8") as f:
|
||||
f.write(f"{datetime.utcnow().isoformat()},{avg_ks},{avg_jsd},{avg_lag1}\n")
|
||||
|
||||
print("avg_ks", avg_ks)
|
||||
print("avg_jsd", avg_jsd)
|
||||
print("avg_lag1_diff", avg_lag1)
|
||||
|
||||
if prev is not None:
|
||||
print("delta_avg_ks", avg_ks - prev["avg_ks"])
|
||||
print("delta_avg_jsd", avg_jsd - prev["avg_jsd"])
|
||||
print("delta_avg_lag1_diff", avg_lag1 - prev["avg_lag1_diff"])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -14,6 +14,7 @@ import torch.nn.functional as F
|
||||
from data_utils import load_split, windowed_batches
|
||||
from hybrid_diffusion import (
|
||||
HybridDiffusionModel,
|
||||
TemporalGRUGenerator,
|
||||
cosine_beta_schedule,
|
||||
q_sample_continuous,
|
||||
q_sample_discrete,
|
||||
@@ -64,6 +65,12 @@ DEFAULTS = {
|
||||
"cont_loss_eps": 1e-6,
|
||||
"cont_target": "eps", # eps | x0
|
||||
"cont_clamp_x0": 0.0,
|
||||
"use_temporal_stage1": True,
|
||||
"temporal_hidden_dim": 256,
|
||||
"temporal_num_layers": 1,
|
||||
"temporal_dropout": 0.0,
|
||||
"temporal_epochs": 2,
|
||||
"temporal_lr": 1e-3,
|
||||
}
|
||||
|
||||
|
||||
@@ -194,6 +201,19 @@ def main():
|
||||
eps_scale=float(config.get("eps_scale", 1.0)),
|
||||
).to(device)
|
||||
opt = torch.optim.Adam(model.parameters(), lr=float(config["lr"]))
|
||||
temporal_model = None
|
||||
opt_temporal = None
|
||||
if bool(config.get("use_temporal_stage1", False)):
|
||||
temporal_model = TemporalGRUGenerator(
|
||||
input_dim=len(cont_cols),
|
||||
hidden_dim=int(config.get("temporal_hidden_dim", 256)),
|
||||
num_layers=int(config.get("temporal_num_layers", 1)),
|
||||
dropout=float(config.get("temporal_dropout", 0.0)),
|
||||
).to(device)
|
||||
opt_temporal = torch.optim.Adam(
|
||||
temporal_model.parameters(),
|
||||
lr=float(config.get("temporal_lr", config["lr"])),
|
||||
)
|
||||
ema = EMA(model, float(config["ema_decay"])) if config.get("use_ema") else None
|
||||
|
||||
betas = cosine_beta_schedule(int(config["timesteps"])).to(device)
|
||||
@@ -208,6 +228,37 @@ def main():
|
||||
with open(os.path.join(out_dir, "config_used.json"), "w", encoding="utf-8") as f:
|
||||
json.dump(config, f, indent=2)
|
||||
|
||||
if temporal_model is not None and opt_temporal is not None:
|
||||
for epoch in range(int(config.get("temporal_epochs", 1))):
|
||||
for step, batch in enumerate(
|
||||
windowed_batches(
|
||||
data_paths,
|
||||
cont_cols,
|
||||
disc_cols,
|
||||
vocab,
|
||||
mean,
|
||||
std,
|
||||
batch_size=int(config["batch_size"]),
|
||||
seq_len=int(config["seq_len"]),
|
||||
max_batches=int(config["max_batches"]),
|
||||
return_file_id=False,
|
||||
transforms=transforms,
|
||||
shuffle_buffer=int(config.get("shuffle_buffer", 0)),
|
||||
)
|
||||
):
|
||||
x_cont, _ = batch
|
||||
x_cont = x_cont.to(device)
|
||||
trend, pred_next = temporal_model.forward_teacher(x_cont)
|
||||
temporal_loss = F.mse_loss(pred_next, x_cont[:, 1:, :])
|
||||
opt_temporal.zero_grad()
|
||||
temporal_loss.backward()
|
||||
if float(config.get("grad_clip", 0.0)) > 0:
|
||||
torch.nn.utils.clip_grad_norm_(temporal_model.parameters(), float(config["grad_clip"]))
|
||||
opt_temporal.step()
|
||||
if step % int(config["log_every"]) == 0:
|
||||
print("temporal_epoch", epoch, "step", step, "loss", float(temporal_loss))
|
||||
torch.save(temporal_model.state_dict(), os.path.join(out_dir, "temporal.pt"))
|
||||
|
||||
total_step = 0
|
||||
for epoch in range(int(config["epochs"])):
|
||||
for step, batch in enumerate(
|
||||
@@ -235,10 +286,17 @@ def main():
|
||||
x_cont = x_cont.to(device)
|
||||
x_disc = x_disc.to(device)
|
||||
|
||||
trend = None
|
||||
if temporal_model is not None:
|
||||
temporal_model.eval()
|
||||
with torch.no_grad():
|
||||
trend, _ = temporal_model.forward_teacher(x_cont)
|
||||
x_cont_resid = x_cont if trend is None else x_cont - trend
|
||||
|
||||
bsz = x_cont.size(0)
|
||||
t = torch.randint(0, int(config["timesteps"]), (bsz,), device=device)
|
||||
|
||||
x_cont_t, noise = q_sample_continuous(x_cont, t, alphas_cumprod)
|
||||
x_cont_t, noise = q_sample_continuous(x_cont_resid, t, alphas_cumprod)
|
||||
|
||||
mask_tokens = torch.tensor(vocab_sizes, device=device)
|
||||
x_disc_t, mask = q_sample_discrete(
|
||||
@@ -253,7 +311,7 @@ def main():
|
||||
|
||||
cont_target = str(config.get("cont_target", "eps"))
|
||||
if cont_target == "x0":
|
||||
x0_target = x_cont
|
||||
x0_target = x_cont_resid
|
||||
if float(config.get("cont_clamp_x0", 0.0)) > 0:
|
||||
x0_target = torch.clamp(x0_target, -float(config["cont_clamp_x0"]), float(config["cont_clamp_x0"]))
|
||||
loss_base = (eps_pred - x0_target) ** 2
|
||||
@@ -308,11 +366,15 @@ def main():
|
||||
}
|
||||
if ema is not None:
|
||||
ckpt["ema"] = ema.state_dict()
|
||||
if temporal_model is not None:
|
||||
ckpt["temporal"] = temporal_model.state_dict()
|
||||
torch.save(ckpt, os.path.join(out_dir, "model_ckpt.pt"))
|
||||
|
||||
torch.save(model.state_dict(), os.path.join(out_dir, "model.pt"))
|
||||
if ema is not None:
|
||||
torch.save(ema.state_dict(), os.path.join(out_dir, "model_ema.pt"))
|
||||
if temporal_model is not None:
|
||||
torch.save(temporal_model.state_dict(), os.path.join(out_dir, "temporal.pt"))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
Reference in New Issue
Block a user