#!/usr/bin/env python3 """Prepare vocab and normalization stats for HAI 21.03.""" import json from pathlib import Path from typing import Optional from data_utils import compute_cont_stats, build_disc_stats, load_split from platform_utils import safe_path, ensure_dir BASE_DIR = Path(__file__).resolve().parent REPO_DIR = BASE_DIR.parent.parent DATA_GLOB = REPO_DIR / "dataset" / "hai" / "hai-21.03" / "train*.csv.gz" SPLIT_PATH = BASE_DIR / "feature_split.json" OUT_STATS = BASE_DIR / "results" / "cont_stats.json" OUT_VOCAB = BASE_DIR / "results" / "disc_vocab.json" def main(max_rows: Optional[int] = None): split = load_split(safe_path(SPLIT_PATH)) time_col = split.get("time_column", "time") cont_cols = [c for c in split["continuous"] if c != time_col] disc_cols = [c for c in split["discrete"] if not c.startswith("attack") and c != time_col] data_paths = sorted(Path(REPO_DIR / "dataset" / "hai" / "hai-21.03").glob("train*.csv.gz")) if not data_paths: raise SystemExit("no train files found under %s" % str(DATA_GLOB)) data_paths = [safe_path(p) for p in data_paths] mean, std, vmin, vmax, int_like, max_decimals = compute_cont_stats(data_paths, cont_cols, max_rows=max_rows) vocab, top_token = build_disc_stats(data_paths, disc_cols, max_rows=max_rows) ensure_dir(OUT_STATS.parent) with open(safe_path(OUT_STATS), "w", encoding="utf-8") as f: json.dump( { "mean": mean, "std": std, "min": vmin, "max": vmax, "int_like": int_like, "max_decimals": max_decimals, "max_rows": max_rows, }, f, indent=2, ) with open(safe_path(OUT_VOCAB), "w", encoding="utf-8") as f: json.dump({"vocab": vocab, "top_token": top_token, "max_rows": max_rows}, f, indent=2) if __name__ == "__main__": # Default: sample 50000 rows for speed. Set to None for full scan. main(max_rows=50000)