# Design & Decision Log ## 2026-01-26 — Two-stage temporal backbone (GRU) + residual diffusion - **Decision**: Add a stage-1 GRU trend model, then train diffusion on residuals. - **Why**: Separate temporal consistency from distribution alignment. - **Files**: - `example/hybrid_diffusion.py` (added `TemporalGRUGenerator`) - `example/train.py` (two-stage training + residual diffusion) - `example/sample.py`, `example/export_samples.py` (trend + residual synthesis) - `example/config.json` (temporal hyperparameters) - **Expected effect**: improve lag-1 consistency; may hurt KS if residual distribution drifts. ## 2026-01-26 — Residual distribution alignment losses - **Decision**: Apply distribution losses to residuals (not raw x0). - **Why**: Diffusion models residuals; alignment should match residual distribution. - **Files**: - `example/train.py` (quantile loss on residuals) - `example/config.json` (quantile weight) ## 2026-01-26 — SNR-weighted loss + residual stats - **Decision**: Add SNR-weighted loss and residual mean/std regularization. - **Why**: Stabilize diffusion training and improve KS. - **Files**: - `example/train.py` - `example/config.json` ## 2026-01-26 — Switchable backbone (GRU vs Transformer) - **Decision**: Make the diffusion backbone configurable (`backbone_type`) with a Transformer encoder option. - **Why**: Test whether self‑attention reduces temporal vs distribution competition without altering the two‑stage design. - **Files**: - `example/hybrid_diffusion.py` - `example/train.py` - `example/sample.py` - `example/export_samples.py` - `example/config.json` ## 2026-01-26 — Per-feature KS diagnostics - **Decision**: Add a per-feature KS/CDF diagnostic script to pinpoint KS failures (tails, boundary pile-up, shifts). - **Why**: Avoid blind reweighting and find the specific features causing KS to stay high. - **Files**: - `example/diagnose_ks.py` ## 2026-01-26 — Quantile transform + sigmoid bounds for continuous features - **Decision**: Add optional quantile normalization (TabDDPM-style) and sigmoid-based bounds to reduce KS spikes. - **Why**: KS failures are dominated by boundary pile-up and tail mismatch. - **Files**: - `example/data_utils.py` - `example/prepare_data.py` - `example/export_samples.py` - `example/config.json` ## 2026-01-27 — Quantile transform without extra standardization - **Decision**: When quantile transform is enabled, skip mean/std normalization (quantile output already ~N(0,1)). - **Why**: Prevent scale mismatch that pushed values to max bounds and blew up KS. - **Files**: - `example/data_utils.py` - `example/export_samples.py` ## 2026-01-27 — Soft bounds + post-scale for boundary pile-up - **Decision**: Replace hard sigmoid bounds with soft tanh bounds and allow per-feature post-scaling. - **Why**: Many continuous features collapsed to max bound (KS=1.0). - **Files**: - `example/export_samples.py` - `example/config.json` ## 2026-01-27 — Post-hoc quantile calibration - **Decision**: Add optional post-hoc quantile calibration to align generated 1D CDFs with real data. - **Why**: KS remained high with distribution shifts even after boundary fixes. - **Files**: - `example/data_utils.py` - `example/export_samples.py` - `example/prepare_data.py` - `example/config.json` ## 2026-01-27 — Full quantile stats in preparation - **Decision**: Enable full statistics when quantile transform is active. - **Why**: Stabilize quantile tables and reduce CDF mismatch. - **Files**: - `example/prepare_data.py` - `example/config.json` ## 2026-01-27 — Filtered KS for diagnostics - **Decision**: Add a filtered KS metric that excludes collapsed/outlier features. - **Why**: Avoid a handful of features dominating the aggregate KS while still reporting full KS. - **Files**: - `example/filtered_metrics.py` - `example/run_all_full.py` ## 2026-01-28 — Tie-aware KS + full-reference aggregation - **Decision**: Fix KS computation to handle ties correctly and aggregate all reference files matched by glob. - **Why**: Spiky/quantized features were overstating KS; single-file reference was misleading. - **Files**: - `example/evaluate_generated.py` ## 2026-01-28 — KS-only postprocess baseline - **Decision**: Add an empirical resampling mode for Type1/2/3/5/6 to aggressively reduce KS. - **Why**: Provide a diagnostic upper-bound on KS without retraining. - **Files**: - `example/postprocess_types.py`