# Architecture Overview ## System Diagram (text) ``` +--------------------+ | Program Generator | | (Type 1 setpoints) | +---------+----------+ | v +-----------------------+ | Controller / Actuator | | (Type 2/3 modules) | +---------+-------------+ | v +----------------------------+ | Diffusion (Residuals) | | - Continuous PVs | | - Discrete mask diffusion | +---------+------------------+ | v +-----------------------------+ | Post-processing | | - Derived tags (Type 5) | | - KS-only resample baseline | +-----------------------------+ ``` ## Core Components - **Stage‑1 Temporal GRU**: learns trend for continuous features. - **Diffusion Backbone**: Transformer (default) or GRU; predicts residuals + discrete logits. - **Post-hoc Calibration**: optional quantile calibration to align 1D CDFs. - **KS-only Baseline**: Type1/2/3/5/6 empirical resampling for rapid KS reduction (diagnostic; may hurt joint realism). ## Feature-Type Split 1) **Type 1**: Setpoints/demands → program generator 2) **Type 2**: Controller outputs → small emulator / conditional head 3) **Type 3**: Actuators/valves → spike‑and‑slab / dwell-time model 4) **Type 4**: Process PVs (multi‑modal/heavy tail) → diffusion with conditioning 5) **Type 5**: Derived tags → deterministic reconstruction (or empirical KS baseline) 6) **Type 6**: Auxiliary/vibration → narrow-band AR/SSM or empirical KS baseline ## Data Flow - Input CSV → stats/vocab → normalized batches - Trend GRU → residual diffusion → inverse transforms → export