#!/usr/bin/env python3 """Prepare vocab and normalization stats for HAI 21.03.""" import json from pathlib import Path from typing import Optional from data_utils import compute_cont_stats, build_disc_stats, load_split, choose_cont_transforms from platform_utils import safe_path, ensure_dir BASE_DIR = Path(__file__).resolve().parent REPO_DIR = BASE_DIR.parent.parent DATA_GLOB = REPO_DIR / "dataset" / "hai" / "hai-21.03" / "train*.csv.gz" SPLIT_PATH = BASE_DIR / "feature_split.json" OUT_STATS = BASE_DIR / "results" / "cont_stats.json" OUT_VOCAB = BASE_DIR / "results" / "disc_vocab.json" def main(max_rows: Optional[int] = None): config_path = BASE_DIR / "config.json" use_quantile = False quantile_bins = None full_stats = False if config_path.exists(): cfg = json.loads(config_path.read_text(encoding="utf-8")) use_quantile = bool(cfg.get("use_quantile_transform", False)) quantile_bins = int(cfg.get("quantile_bins", 0)) if use_quantile else None full_stats = bool(cfg.get("full_stats", False)) if full_stats: max_rows = None split = load_split(safe_path(SPLIT_PATH)) time_col = split.get("time_column", "time") cont_cols = [c for c in split["continuous"] if c != time_col] disc_cols = [c for c in split["discrete"] if not c.startswith("attack") and c != time_col] data_paths = sorted(Path(REPO_DIR / "dataset" / "hai" / "hai-21.03").glob("train*.csv.gz")) if not data_paths: raise SystemExit("no train files found under %s" % str(DATA_GLOB)) data_paths = [safe_path(p) for p in data_paths] transforms, _ = choose_cont_transforms(data_paths, cont_cols, max_rows=max_rows) cont_stats = compute_cont_stats( data_paths, cont_cols, max_rows=max_rows, transforms=transforms, quantile_bins=quantile_bins, ) vocab, top_token = build_disc_stats(data_paths, disc_cols, max_rows=max_rows) ensure_dir(OUT_STATS.parent) with open(safe_path(OUT_STATS), "w", encoding="utf-8") as f: json.dump( { "mean": cont_stats["mean"], "std": cont_stats["std"], "raw_mean": cont_stats["raw_mean"], "raw_std": cont_stats["raw_std"], "min": cont_stats["min"], "max": cont_stats["max"], "int_like": cont_stats["int_like"], "max_decimals": cont_stats["max_decimals"], "transform": cont_stats["transform"], "skew": cont_stats["skew"], "max_rows": cont_stats["max_rows"], "quantile_probs": cont_stats["quantile_probs"], "quantile_values": cont_stats["quantile_values"], "quantile_raw_values": cont_stats["quantile_raw_values"], }, f, indent=2, ) with open(safe_path(OUT_VOCAB), "w", encoding="utf-8") as f: json.dump({"vocab": vocab, "top_token": top_token, "max_rows": max_rows}, f, indent=2) if __name__ == "__main__": # Default: sample 50000 rows for speed. Set to None for full scan. main(max_rows=50000)