#!/usr/bin/env python3 """One-click pipeline: prepare -> train -> export -> evaluate -> plot loss.""" import argparse import subprocess import sys from pathlib import Path import json from platform_utils import safe_path, is_windows def run(cmd): print("running:", " ".join(cmd)) # 使用safe_path确保跨平台兼容性 cmd = [safe_path(arg) for arg in cmd] # 在Windows上可能需要特殊处理 if is_windows(): subprocess.run(cmd, check=True, shell=False) else: subprocess.run(cmd, check=True) def parse_args(): parser = argparse.ArgumentParser(description="Run full HAI pipeline.") base_dir = Path(__file__).resolve().parent parser.add_argument( "--config", default=str(base_dir / "config.json"), help="Path to training config JSON", ) parser.add_argument( "--device", default="auto", help="cpu, cuda, or auto (used for export_samples.py)", ) return parser.parse_args() def main(): args = parse_args() base_dir = Path(__file__).resolve().parent config_path = Path(args.config) with open(config_path, "r", encoding="utf-8") as f: cfg = json.load(f) timesteps = cfg.get("timesteps", 200) seq_len = cfg.get("sample_seq_len", cfg.get("seq_len", 64)) batch_size = cfg.get("sample_batch_size", cfg.get("batch_size", 2)) clip_k = cfg.get("clip_k", 5.0) run([sys.executable, str(base_dir / "prepare_data.py")]) run([sys.executable, str(base_dir / "train.py"), "--config", args.config, "--device", args.device]) run( [ sys.executable, str(base_dir / "export_samples.py"), "--include-time", "--device", args.device, "--config", str(config_path), "--timesteps", str(timesteps), "--seq-len", str(seq_len), "--batch-size", str(batch_size), "--clip-k", str(clip_k), "--use-ema", ] ) run([sys.executable, str(base_dir / "evaluate_generated.py")]) run([sys.executable, str(base_dir / "plot_loss.py")]) if __name__ == "__main__": main()