Files
mask-ddpm/example/run_pipeline.py

85 lines
2.4 KiB
Python

#!/usr/bin/env python3
"""One-click pipeline: prepare -> train -> export -> evaluate -> plot loss."""
import argparse
import subprocess
import sys
from pathlib import Path
import json
from platform_utils import safe_path, is_windows
def run(cmd):
print("running:", " ".join(cmd))
# 使用safe_path确保跨平台兼容性
cmd = [safe_path(arg) for arg in cmd]
# 在Windows上可能需要特殊处理
if is_windows():
subprocess.run(cmd, check=True, shell=False)
else:
subprocess.run(cmd, check=True)
def parse_args():
parser = argparse.ArgumentParser(description="Run full HAI pipeline.")
base_dir = Path(__file__).resolve().parent
parser.add_argument(
"--config",
default=str(base_dir / "config.json"),
help="Path to training config JSON",
)
parser.add_argument(
"--device",
default="auto",
help="cpu, cuda, or auto (used for export_samples.py)",
)
return parser.parse_args()
def main():
args = parse_args()
base_dir = Path(__file__).resolve().parent
config_path = Path(args.config)
with open(config_path, "r", encoding="utf-8") as f:
cfg = json.load(f)
timesteps = cfg.get("timesteps", 200)
seq_len = cfg.get("sample_seq_len", cfg.get("seq_len", 64))
batch_size = cfg.get("sample_batch_size", cfg.get("batch_size", 2))
clip_k = cfg.get("clip_k", 5.0)
data_glob = cfg.get("data_glob", "")
data_path = cfg.get("data_path", "")
run([sys.executable, str(base_dir / "prepare_data.py")])
run([sys.executable, str(base_dir / "train.py"), "--config", args.config, "--device", args.device])
run(
[
sys.executable,
str(base_dir / "export_samples.py"),
"--include-time",
"--device",
args.device,
"--config",
str(config_path),
"--timesteps",
str(timesteps),
"--seq-len",
str(seq_len),
"--batch-size",
str(batch_size),
"--clip-k",
str(clip_k),
"--use-ema",
]
)
ref = data_glob if data_glob else data_path
if ref:
run([sys.executable, str(base_dir / "evaluate_generated.py"), "--reference", str(ref)])
else:
run([sys.executable, str(base_dir / "evaluate_generated.py")])
run([sys.executable, str(base_dir / "plot_loss.py")])
if __name__ == "__main__":
main()