Implemented checker as described in internal-docs/notes4coding/checker_design.md

This commit is contained in:
DaZuo0122
2026-01-15 19:07:26 +08:00
commit c1c36cdf56
19 changed files with 2172 additions and 0 deletions

188
docs/api.md Normal file
View File

@@ -0,0 +1,188 @@
# API Documentation
This document describes the input/output formats and the checker program API.
## CLI API
Command:
```bash
checker --pcap <trace.pcapng> --meta <trace.meta.jsonl> --config <modbus.json> \
--report <report.json> [--port 502] [--mode mvp|strict] [--fail-fast]
```
Exit behavior:
- Returns a non-zero exit code only on process-level errors (I/O, parse failures).
- Validation findings are written to the report file.
## JSONL Sidecar (`trace.meta.jsonl`)
Each line corresponds to one packet, in the same order as the PCAP.
```json
{
"trace_id": "c7f1...",
"event_id": 42,
"pcap_index": 42,
"ts_ns": 1736451234567890123,
"direction": "c2s",
"flow": {
"src_ip": "10.0.0.10",
"src_port": 51012,
"dst_ip": "10.0.0.20",
"dst_port": 502
},
"expected": {
"modbus": {
"transaction_id": 513,
"unit_id": 1,
"function_code": 3
},
"fields": {
"starting_address": 0,
"quantity": 10
}
}
}
```
Example: `docs/examples/trace.meta.jsonl`
Fields:
- `trace_id` (string, optional): Trace identifier.
- `event_id` (integer, optional): Event identifier from generator.
- `pcap_index` (integer, optional): Packet index for reference.
- `ts_ns` (integer, optional): Timestamp in nanoseconds.
- `direction` (string, required): `c2s` (request) or `s2c` (response).
- `flow` (object, required): Flow metadata used for request/response tracking.
- `expected` (object, optional): Expected Modbus header and/or field values.
`expected.modbus`:
- `transaction_id` (u16, optional)
- `unit_id` (u8, optional)
- `function_code` (u8, optional)
`expected.fields`:
- Arbitrary JSON object whose keys match descriptor field names.
- Values are compared against parsed output.
## Modbus Descriptor JSON (`modbus.json`)
Top-level:
```json
{
"functions": [
{
"function": 3,
"name": "read_holding_registers",
"request": [
{"name":"starting_address","type":"u16"},
{"name":"quantity","type":"u16"}
],
"response": [
{"name":"byte_count","type":"u8"},
{"name":"registers","type":"bytes","length_from":"byte_count"}
]
}
]
}
```
Example: `docs/examples/modbus.json`
Function descriptor:
- `function` (u8, required): Function code.
- `name` (string, optional): Human-readable function name.
- `request` (array, optional): Field list for client-to-server PDUs.
- `response` (array, optional): Field list for server-to-client PDUs.
Field descriptor:
- `name` (string, required): Field name used in output JSON.
- `type` (string, required): `u8`, `u16`, `u32`, `i16`, `i32`, `bytes`.
- `length` (integer, optional): Fixed length for `bytes`.
- `length_from` (string, optional): Name of a previous numeric field.
- `scale` (number, optional): Multiply numeric values by this scale.
- `enum_map` (object, optional): Map numeric strings to JSON values.
Notes:
- `length_from` uses values parsed earlier in the same descriptor.
- `bytes` output is an array of integers.
## Report JSON (`report.json`)
Structure:
```json
{
"summary": {
"total_packets": 1000,
"total_findings": 8,
"fatal": 1,
"error": 4,
"warn": 3,
"info": 0
},
"findings": [
{
"pcap_index": 7,
"event_id": 42,
"severity": "error",
"code": "mbap_protocol",
"message": "Protocol id is 1, expected 0",
"flow": {
"src_ip": "10.0.0.10",
"src_port": 51012,
"dst_ip": "10.0.0.20",
"dst_port": 502
},
"observed": {"payload_len": 42, "mbap_length": 10},
"expected": null
}
]
}
```
Example: `docs/examples/report.json`
Summary fields:
- `total_packets`: Total packets processed.
- `total_findings`: Total findings emitted.
- `fatal`, `error`, `warn`, `info`: Counts by severity.
Finding fields:
- `pcap_index` (u64): Index in PCAP stream.
- `event_id` (u64, optional): Event identifier from metadata.
- `severity` (string): `fatal`, `error`, `warn`, `info`.
- `code` (string): Short machine-friendly code.
- `message` (string): Human-readable description.
- `flow` (object, optional): Source/destination addresses.
- `observed` (JSON, optional): Observed values for comparison.
- `expected` (JSON, optional): Expected values for comparison.
## Validation Modes
- `mvp`: Core checks only.
- `strict`: Treat MBAP length mismatch as a stopping condition.
## Internal Module API (Rust)
Primary modules:
- `config`: Descriptor types and loader for JSON config.
- `meta`: JSONL metadata structs.
- `decode`: PCAP packet decode to TCP payload.
- `mbap`: MBAP parsing utilities.
- `modbus_desc`: Descriptor-based field parsing.
- `state`: Outstanding request tracking.
- `validate`: End-to-end validation pipeline.
- `report`: Report data structures.

357
docs/design.md Normal file
View File

@@ -0,0 +1,357 @@
## Conversation summary (so far)
* Youre building a **Modbus/TCP traffic generation system for security use** with this pipeline:
**feature extraction → hybrid diffusion generates features → generator turns features into raw packets → checker validates traffic**.
* I proposed a checker that validates traffic at **multiple layers**:
1. frame/IP/TCP parseability,
2. optional TCP conversation sanity,
3. Modbus/TCP structural + semantic validity (MBAP + PDU),
4. optional “feature-fidelity” checks against generator sidecar metadata.
* I recommended a **generator → checker contract** that is easy to debug and automate:
**PCAP/PCAPNG + JSONL sidecar** (1 metadata line per packet/event).
* You then shared your existing **descriptor-driven Modbus parser** (Rust) and a short doc.
The public API/type model is: `Config → FunctionDescriptor → FieldDescriptor(FieldType, length/length_from/scale/enum_map)`
and `parse_sawp_message(...)` returns JSON containing `unit`, `function`, optional `exception`, and `fields` .
* I said: the **descriptor engine is very reusable** for the checker, but the checkers entry point should ideally work on **raw Modbus/TCP bytes** (MBAP+PDU), not require `sawp_modbus::Message`.
Also: for checker ergonomics, prefer structured error types over `Result<Value, String>` (but you can keep JSON output for the MVP).
---
# Implementation document: Modbus/TCP Checker (Rust)
This document is a practical, “not too complex” plan to implement the checker while still following good practices where they dont add much difficulty.
## 1) What the checker does (goals / non-goals)
### Goals
The checker verifies that generator output is:
1. **Parsable** as TCP/IP traffic,
2. **Modbus/TCP-valid** at the application level (MBAP + PDU rules),
3. **Consistent** in request/response pairing (Transaction ID matching),
4. Optionally **matches the expected features** (function code, unit id, quantities, payload size, timing tolerances, etc.).
### Non-goals (to keep it simple)
To avoid turning this into a full Wireshark, we deliberately **do not** implement:
* full TCP stream reassembly (segments split/merged),
* full TCP state machine with retransmits/out-of-order handling,
* IP/TCP checksum verification by default.
Instead, we enforce a **generator constraint**: **one Modbus ADU per TCP payload** (no segmentation, no coalescing). This single constraint dramatically reduces checker complexity and is realistic for generated traces.
> Trade-off: best practice would handle segmentation/coalescing and reassembly; difficulty rises a lot. The “one ADU per TCP payload” rule is the best complexity/benefit lever for this project.
---
## 2) Generator output contract (what the checker consumes)
### Recommended output (MVP-friendly and debuggable)
**(A) PCAP or PCAPNG file**
* `trace.pcapng` (or `.pcap`) containing the raw generated packets
**(B) Sidecar JSONL metadata file**
* `trace.meta.jsonl` where each line describes the corresponding packet/event (same order)
This is the easiest way to:
* reproduce failures,
* correlate packet index with expected semantic fields,
* produce actionable reports.
### JSONL schema (minimal + optional)
**Minimal fields (recommended):**
* `trace_id` (string/uuid)
* `event_id` (monotonic integer)
* `pcap_index` (or implicit by line number)
* `ts_ns` timestamp
* `direction` (`"c2s"` or `"s2c"`)
* `flow` (src/dst ip/port)
**Optional `expected` block (for feature-fidelity checks):**
* `expected.modbus.transaction_id`, `unit_id`, `function_code`, and `expected.fields` (names matching your descriptor JSON).
Example line:
```json
{
"trace_id": "c7f1...",
"event_id": 42,
"pcap_index": 42,
"ts_ns": 1736451234567890123,
"direction": "c2s",
"flow": {"src_ip":"10.0.0.10","src_port":51012,"dst_ip":"10.0.0.20","dst_port":502},
"expected": {
"modbus": {"transaction_id": 513, "unit_id": 1, "function_code": 3},
"fields": {"starting_address": 0, "quantity": 10}
}
}
```
> Trade-off: best practice is “self-describing PCAP” (pcapng custom blocks, or embedding metadata); difficulty higher. JSONL sidecar is dead simple and works well.
---
## 3) Workflow (starting from generator output)
### Step 0 — Load inputs
1. Read `trace.meta.jsonl` into a lightweight iterator (dont load all if trace is huge).
2. Open `trace.pcapng` and stream packets in order.
### Step 1 — Align packets and metadata
For each packet index `i`:
* read packet `i` from PCAP
* read metadata line `i` from JSONL
If mismatch (missing line/packet), record a **Fatal** alignment error and stop (or continue with “best effort”, your call).
### Step 2 — Decode packet and extract TCP payload
Decode:
* link layer (Ethernet/SLL/RAW depending on PCAP linktype),
* IPv4/IPv6,
* TCP,
* extract TCP payload bytes.
Minimal checks:
* packet parses,
* TCP payload length > 0 when direction indicates Modbus message,
* port 502 is present on either side (configurable if you generate non-502).
### Step 3 — Parse Modbus/TCP ADU
Assuming payload contains exactly one ADU:
* parse MBAP (7 bytes) + PDU
* validate basic MBAP invariants
* parse function code and PDU data
* decide request vs response based on `direction`
* parse PDU data using descriptor map (your reusable part)
### Step 4 — Stateful consistency checks
Maintain per-flow state:
* request/response pairing by `(transaction_id, unit_id)`
* outstanding request table with timeout/window limits
### Step 5 — Feature-fidelity checks (optional)
If `expected` exists in JSONL:
* compare decoded modbus header + parsed fields with expected values
* compare sizes and (optionally) timing with tolerances
### Step 6 — Emit report
Output:
* `report.json` with summary + per-finding samples (packet indices, flow key, reason, extracted fields)
* optional `report.txt` for quick reading
---
## 4) Reusing your existing parser (what to keep, what to adjust)
You already have:
* A descriptor model (`Config/FunctionDescriptor/FieldDescriptor/FieldType`)
* A function that returns a JSON representation with the shape the checker wants (`unit`, `function`, optional `exception`, `fields`)
### 4.1 What is immediately reusable
**Highly reusable for the checker:**
* Descriptor loading (serde)
* Field decoding logic (length/length_from, scale, enum_map)
* The “JSON output” idea for reporting and debugging
### 4.2 Small design adjustment to make reuse clean (recommended)
Your checker will naturally see **raw TCP payload bytes**. So the lowest-friction integration is:
* Implement a tiny **MBAP parser** in the checker:
* returns `(transaction_id, protocol_id, length, unit_id, function_code, pdu_data)`
* Then call your descriptor-based decoder on `pdu_data` (bytes **after** function code)
Your doc shows the parser conceptually returns JSON with `fields` and supports request vs response descriptors , which maps perfectly to `direction`.
**Suggested public entrypoint to expose from your parser module:**
* `parse_with_descriptor(pdu_data: &[u8], unit: u8, function: u8, fields: &Vec<FieldDescriptor>) -> Result<Value, String>`
If its currently private, just make it `pub(crate)` or `pub` and reuse it. This avoids binding the checker to `sawp_modbus::Message` and keeps implementation simple.
> Trade-off: best practice would be to return a typed struct + typed errors; easier to maintain long term but more refactor work. For your “dont make it hard” requirement, keeping JSON output + simple error types is totally fine for the first version.
### 4.3 How the checker chooses which descriptor to use
* If `direction == c2s` → request descriptor
* If `direction == s2c` → response descriptor
This matches the intent of having `request` and `response` descriptor vectors in your model .
---
## 5) Checker internal design (simple but extensible)
### 5.1 Core data structures
* `FlowKey { src_ip, src_port, dst_ip, dst_port, ip_version }`
* `PacketCtx { trace_id, event_id, pcap_index, ts_ns, direction, flow }`
* `DecodedModbus { transaction_id, protocol_id, length, unit_id, function_code, is_exception, exception_code?, pdu_data, parsed_fields_json? }`
### 5.2 “Rules” model (optional, but keeps code tidy)
Instead of huge if/else blocks, implement a few rules that return findings:
* `RuleMbapValid`
* `RuleFunctionPduWellFormed` (basic length sanity)
* `RuleTxIdPairing`
* `RuleExpectedMatch` (only if sidecar has expected)
If you dont want a formal trait system initially, just implement these as functions that append to a `Vec<Finding>`.
### 5.3 Findings + severity
Use a compact severity scale:
* `Fatal`: cannot parse / cannot continue reliably
* `Error`: protocol invalid
* `Warn`: unusual but maybe acceptable
* `Info`: stats
A finding should include:
* `pcap_index`, `event_id`, `flow`, `severity`, `code`, `message`
* optional `observed` and `expected` snippets
---
## 6) What the checker validates (MVP vs stricter)
### MVP validations (recommended first milestone)
1. PCAP + JSONL aligned
2. Parse Ethernet/IP/TCP and extract payload
3. MBAP:
* payload length ≥ 7
* length field consistency (basic)
4. PDU:
* function code exists
* exception handling if `fc & 0x80 != 0`
5. Descriptor parse success (request/response based on direction)
6. Transaction pairing:
* every response matches an outstanding request by transaction_id/unit_id
* no duplicate outstanding txid unless you allow it
### “Strict mode” additions (still reasonable)
* enforce unit_id range (if you want)
* enforce function-code-specific invariants using parsed fields
* e.g., `byte_count == 2 * quantity` for register reads/writes (if present in descriptor)
* timeouts:
* response must arrive within configured window
### Heavy features (avoid unless needed)
* TCP reassembly and multi-ADU per segment
* checksum verification
* handling retransmits/out-of-order robustly
---
## 7) Dependencies (crates) for the checker
### Minimal set (keeps implementation easy)
* **PCAP reading**
* `pcap` (libpcap-backed; you already use it in your codebase)
* **Packet decoding**
* `pnet_packet` (you already use `pnet` patterns)
* **Config + sidecar + report**
* `serde`, `serde_json`
* **Errors + logging**
* `anyhow` (fast to integrate) and/or `thiserror` (nicer structured errors)
* `tracing`, `tracing-subscriber`
* **Utilities**
* `hashbrown` (optional; std HashMap is fine)
* `hex` (useful for debug/trailing bytes like your parser does)
### If you want to reduce external requirements (optional alternative)
* Replace `pcap` with `pcap-file` (pure Rust; no libpcap dependency)
* Replace `pnet` with `etherparse` (often simpler APIs)
> Trade-off: “best practice” for portability is pure Rust (`pcap-file` + `etherparse`).
> “Best practice” for least effort *given your current code* is reusing `pcap` + `pnet`.
---
## 8) Suggested project layout (simple)
```
checker/
src/
main.rs # CLI entry
config.rs # descriptor loading
meta.rs # JSONL reader structs
pcap_in.rs # pcap streaming
decode.rs # ethernet/ip/tcp extract payload
mbap.rs # Modbus/TCP MBAP parsing
modbus_desc.rs # reuse your parse_with_descriptor + types
state.rs # outstanding tx table
validate.rs # main validation pipeline
report.rs # report structs + JSON output
```
---
## 9) Practical implementation tips (to keep it from getting “hard”)
1. **Enforce generator constraints**:
* one ADU per TCP payload
* no splitting/coalescing
This keeps checker complexity low and makes failure reasons obvious.
2. **Keep JSON output for parsed fields** at first:
* You already have a clean JSON shape (`unit`, `function`, `fields`)
* Great for debugging mismatches with `expected.fields`
3. **Add strictness as “modes”**:
* `--mode=mvp | strict`
* or config file toggles
4. **Fail-fast vs best-effort**:
* For CI or batch filtering, fail-fast on `Fatal` is fine.
* For research/debugging, best-effort (continue and collect findings) is more useful.
---

16
docs/examples/modbus.json Normal file
View File

@@ -0,0 +1,16 @@
{
"functions": [
{
"function": 3,
"name": "read_holding_registers",
"request": [
{"name":"starting_address","type":"u16"},
{"name":"quantity","type":"u16"}
],
"response": [
{"name":"byte_count","type":"u8"},
{"name":"registers","type":"bytes","length_from":"byte_count"}
]
}
]
}

31
docs/examples/report.json Normal file
View File

@@ -0,0 +1,31 @@
{
"summary": {
"total_packets": 1,
"total_findings": 1,
"fatal": 0,
"error": 1,
"warn": 0,
"info": 0
},
"findings": [
{
"pcap_index": 0,
"event_id": 1,
"severity": "error",
"code": "expected_field_mismatch",
"message": "Field mismatch for quantity",
"flow": {
"src_ip": "10.0.0.10",
"src_port": 51012,
"dst_ip": "10.0.0.20",
"dst_port": 502
},
"observed": {
"field": "quantity",
"observed": 1,
"expected": 2
},
"expected": null
}
]
}

View File

@@ -0,0 +1 @@
{"trace_id":"example-trace","event_id":1,"pcap_index":0,"ts_ns":1736451234567890000,"direction":"c2s","flow":{"src_ip":"10.0.0.10","src_port":51012,"dst_ip":"10.0.0.20","dst_port":502},"expected":{"modbus":{"transaction_id":513,"unit_id":1,"function_code":3},"fields":{"starting_address":0,"quantity":2}}}