Add: dns leak detection
This commit is contained in:
19
Cargo.lock
generated
19
Cargo.lock
generated
@@ -1059,6 +1059,9 @@ name = "ipnet"
|
||||
version = "2.11.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "469fb0b9cefa57e3ef31275ee7cacb78f2fdca44e4765491884a2b119d4eb130"
|
||||
dependencies = [
|
||||
"serde",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "ipnetwork"
|
||||
@@ -3234,6 +3237,7 @@ dependencies = [
|
||||
"wtfnet-diag",
|
||||
"wtfnet-discover",
|
||||
"wtfnet-dns",
|
||||
"wtfnet-dnsleak",
|
||||
"wtfnet-geoip",
|
||||
"wtfnet-http",
|
||||
"wtfnet-platform",
|
||||
@@ -3271,6 +3275,7 @@ dependencies = [
|
||||
name = "wtfnet-discover"
|
||||
version = "0.1.0"
|
||||
dependencies = [
|
||||
"hickory-proto",
|
||||
"mdns-sd",
|
||||
"serde",
|
||||
"thiserror 2.0.17",
|
||||
@@ -3296,6 +3301,20 @@ dependencies = [
|
||||
"url",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "wtfnet-dnsleak"
|
||||
version = "0.1.0"
|
||||
dependencies = [
|
||||
"hickory-proto",
|
||||
"ipnet",
|
||||
"pnet",
|
||||
"serde",
|
||||
"thiserror 2.0.17",
|
||||
"tokio",
|
||||
"tracing",
|
||||
"wtfnet-platform",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "wtfnet-geoip"
|
||||
version = "0.1.0"
|
||||
|
||||
@@ -10,6 +10,7 @@ members = [
|
||||
"crates/wtfnet-geoip",
|
||||
"crates/wtfnet-probe",
|
||||
"crates/wtfnet-dns",
|
||||
"crates/wtfnet-dnsleak",
|
||||
"crates/wtfnet-http",
|
||||
"crates/wtfnet-tls",
|
||||
"crates/wtfnet-discover",
|
||||
|
||||
24
README.md
24
README.md
@@ -7,8 +7,10 @@ WTFnet is a pure CLI toolbox for diagnosing network problems on Linux and Window
|
||||
- Ports, neighbors, and trusted root certificates.
|
||||
- Probing: ping, tcping, traceroute (best-effort).
|
||||
- DNS: query/detect/watch with GeoIP, DoT/DoH, and SOCKS5 support.
|
||||
- DNS leak detection with policy profiles and privacy modes (best-effort).
|
||||
- GeoIP offline lookup via GeoLite2 Country/ASN.
|
||||
- Subnet calculator: subnet/contains/overlap/summarize.
|
||||
- Discover: mDNS/SSDP plus LLMNR/NBNS.
|
||||
|
||||
## Quickstart
|
||||
```bash
|
||||
@@ -44,6 +46,9 @@ wtfn dns query example.com A --transport doh --server 1.1.1.1 --tls-name cloudfl
|
||||
wtfn dns query example.com A --transport dot --server 1.1.1.1 --tls-name cloudflare-dns.com --socks5 socks5://127.0.0.1:9909
|
||||
wtfn dns detect example.com --transport doh --servers 1.1.1.1 --tls-name cloudflare-dns.com
|
||||
wtfn dns watch --duration 10s --filter example.com
|
||||
wtfn dns leak status
|
||||
wtfn dns leak watch --duration 10s --profile proxy-stub
|
||||
wtfn dns leak report report.json
|
||||
|
||||
# TLS
|
||||
wtfn tls handshake example.com:443
|
||||
@@ -55,6 +60,8 @@ wtfn tls alpn example.com:443 --alpn h2,http/1.1
|
||||
# Discover
|
||||
wtfn discover mdns --duration 3s
|
||||
wtfn discover ssdp --duration 3s
|
||||
wtfn discover llmnr --duration 3s
|
||||
wtfn discover nbns --duration 3s
|
||||
|
||||
# Diag
|
||||
wtfn diag --out report.json --json
|
||||
@@ -90,10 +97,16 @@ Command flags (implemented):
|
||||
- `dns query`: `--server <ip[:port]>`, `--transport <udp|tcp|dot|doh>`, `--tls-name <name>`, `--socks5 <url>`, `--prefer-ipv4`, `--timeout-ms <n>`
|
||||
- `dns detect`: `--servers <csv>`, `--transport <udp|tcp|dot|doh>`, `--tls-name <name>`, `--socks5 <url>`, `--prefer-ipv4`, `--repeat <n>`, `--timeout-ms <n>`
|
||||
- `dns watch`: `--duration <Ns|Nms>`, `--iface <name>`, `--filter <pattern>`
|
||||
- `dns leak status`: `--profile <full-tunnel|proxy-stub|split>`, `--policy <path>`
|
||||
- `dns leak watch`: `--duration <Ns|Nms>`, `--iface <name>`, `--profile <full-tunnel|proxy-stub|split>`, `--policy <path>`, `--privacy <full|redacted|minimal>`, `--out <path>`, `--summary-only`
|
||||
- `dns leak watch`: `--iface-diag` (prints capture-capable interfaces)
|
||||
- `dns leak report`: `<path>`, `--privacy <full|redacted|minimal>`
|
||||
- `http head|get`: `--timeout-ms <n>`, `--follow-redirects <n>`, `--show-headers`, `--show-body`, `--max-body-bytes <n>`, `--http1-only`, `--http2-only`, `--http3` (feature `http3`), `--http3-only` (feature `http3`), `--geoip`, `--socks5 <url>`
|
||||
- `tls handshake|cert|verify|alpn`: `--sni <name>`, `--alpn <csv>`, `--timeout-ms <n>`, `--insecure`, `--socks5 <url>`, `--prefer-ipv4`, `--show-extensions`, `--ocsp`
|
||||
- `discover mdns`: `--duration <Ns|Nms>`, `--service <type>`
|
||||
- `discover ssdp`: `--duration <Ns|Nms>`
|
||||
- `discover llmnr`: `--duration <Ns|Nms>`, `--name <host>`
|
||||
- `discover nbns`: `--duration <Ns|Nms>`
|
||||
- `diag`: `--out <path>`, `--bundle <path>`, `--dns-detect <domain>`, `--dns-timeout-ms <n>`, `--dns-repeat <n>`
|
||||
|
||||
## GeoIP data files
|
||||
@@ -149,6 +162,11 @@ cargo run -p wtfnet-cli --features wtfnet-http/http3 -- http head https://cloudf
|
||||
- optional LLMNR/NBNS discovery
|
||||
- optional HTTP/3 (feature-gated; experimental, incomplete)
|
||||
|
||||
### v0.4 (current requirements)
|
||||
- dns leak detection (passive watch + report)
|
||||
- process attribution (best-effort)
|
||||
- policy profiles + privacy modes
|
||||
|
||||
## Current stage
|
||||
Implemented:
|
||||
- Core CLI with JSON output and logging.
|
||||
@@ -157,14 +175,16 @@ Implemented:
|
||||
- http head/get with timing and GeoIP.
|
||||
- tls handshake/verify/cert/alpn.
|
||||
- DoT/DoH + SOCKS5 proxy support.
|
||||
- discover mdns/ssdp.
|
||||
- discover mdns/ssdp/llmnr/nbns.
|
||||
- dns leak detection (status/watch/report).
|
||||
- diag report + bundle.
|
||||
- calc subcrate with subnet/contains/overlap/summarize.
|
||||
- CMake/Makefile build + package + install targets.
|
||||
- Basic unit tests for calc and TLS parsing.
|
||||
|
||||
In progress:
|
||||
- none.
|
||||
- dns leak: DoH heuristic classification (optional).
|
||||
- dns leak: Leak-D mismatch correlation (optional).
|
||||
|
||||
See `docs/implementation_status.md` for a design-vs-implementation view.
|
||||
|
||||
|
||||
@@ -19,6 +19,7 @@ wtfnet-geoip = { path = "../wtfnet-geoip" }
|
||||
wtfnet-platform = { path = "../wtfnet-platform" }
|
||||
wtfnet-probe = { path = "../wtfnet-probe" }
|
||||
wtfnet-dns = { path = "../wtfnet-dns", features = ["pcap"] }
|
||||
wtfnet-dnsleak = { path = "../wtfnet-dnsleak", features = ["pcap"] }
|
||||
wtfnet-http = { path = "../wtfnet-http" }
|
||||
wtfnet-tls = { path = "../wtfnet-tls" }
|
||||
wtfnet-discover = { path = "../wtfnet-discover" }
|
||||
|
||||
@@ -130,6 +130,17 @@ enum DnsCommand {
|
||||
Query(DnsQueryArgs),
|
||||
Detect(DnsDetectArgs),
|
||||
Watch(DnsWatchArgs),
|
||||
Leak {
|
||||
#[command(subcommand)]
|
||||
command: DnsLeakCommand,
|
||||
},
|
||||
}
|
||||
|
||||
#[derive(Subcommand, Debug)]
|
||||
enum DnsLeakCommand {
|
||||
Status(DnsLeakStatusArgs),
|
||||
Watch(DnsLeakWatchArgs),
|
||||
Report(DnsLeakReportArgs),
|
||||
}
|
||||
|
||||
#[derive(Subcommand, Debug)]
|
||||
@@ -158,6 +169,8 @@ enum TlsCommand {
|
||||
enum DiscoverCommand {
|
||||
Mdns(DiscoverMdnsArgs),
|
||||
Ssdp(DiscoverSsdpArgs),
|
||||
Llmnr(DiscoverLlmnrArgs),
|
||||
Nbns(DiscoverNbnsArgs),
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug, Clone)]
|
||||
@@ -320,6 +333,41 @@ struct DnsWatchArgs {
|
||||
filter: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug, Clone)]
|
||||
struct DnsLeakStatusArgs {
|
||||
#[arg(long)]
|
||||
profile: Option<String>,
|
||||
#[arg(long)]
|
||||
policy: Option<PathBuf>,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug, Clone)]
|
||||
struct DnsLeakWatchArgs {
|
||||
#[arg(long, default_value = "10s")]
|
||||
duration: String,
|
||||
#[arg(long)]
|
||||
iface: Option<String>,
|
||||
#[arg(long)]
|
||||
profile: Option<String>,
|
||||
#[arg(long)]
|
||||
policy: Option<PathBuf>,
|
||||
#[arg(long, default_value = "redacted")]
|
||||
privacy: String,
|
||||
#[arg(long)]
|
||||
out: Option<PathBuf>,
|
||||
#[arg(long)]
|
||||
summary_only: bool,
|
||||
#[arg(long)]
|
||||
iface_diag: bool,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug, Clone)]
|
||||
struct DnsLeakReportArgs {
|
||||
path: PathBuf,
|
||||
#[arg(long, default_value = "redacted")]
|
||||
privacy: String,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug, Clone)]
|
||||
struct CalcSubnetArgs {
|
||||
input: Vec<String>,
|
||||
@@ -404,6 +452,20 @@ struct DiscoverSsdpArgs {
|
||||
duration: String,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug, Clone)]
|
||||
struct DiscoverLlmnrArgs {
|
||||
#[arg(long, default_value = "3s")]
|
||||
duration: String,
|
||||
#[arg(long)]
|
||||
name: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug, Clone)]
|
||||
struct DiscoverNbnsArgs {
|
||||
#[arg(long, default_value = "3s")]
|
||||
duration: String,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug, Clone)]
|
||||
struct DiagArgs {
|
||||
#[arg(long)]
|
||||
@@ -550,6 +612,13 @@ async fn main() {
|
||||
Commands::Dns {
|
||||
command: DnsCommand::Watch(args),
|
||||
} => handle_dns_watch(&cli, args.clone()).await,
|
||||
Commands::Dns {
|
||||
command: DnsCommand::Leak { command },
|
||||
} => match command {
|
||||
DnsLeakCommand::Status(args) => handle_dns_leak_status(&cli, args.clone()).await,
|
||||
DnsLeakCommand::Watch(args) => handle_dns_leak_watch(&cli, args.clone()).await,
|
||||
DnsLeakCommand::Report(args) => handle_dns_leak_report(&cli, args.clone()).await,
|
||||
},
|
||||
Commands::Calc {
|
||||
command: CalcCommand::Subnet(args),
|
||||
} => handle_calc_subnet(&cli, args.clone()).await,
|
||||
@@ -586,6 +655,12 @@ async fn main() {
|
||||
Commands::Discover {
|
||||
command: DiscoverCommand::Ssdp(args),
|
||||
} => handle_discover_ssdp(&cli, args.clone()).await,
|
||||
Commands::Discover {
|
||||
command: DiscoverCommand::Llmnr(args),
|
||||
} => handle_discover_llmnr(&cli, args.clone()).await,
|
||||
Commands::Discover {
|
||||
command: DiscoverCommand::Nbns(args),
|
||||
} => handle_discover_nbns(&cli, args.clone()).await,
|
||||
Commands::Diag(args) => handle_diag(&cli, args.clone()).await,
|
||||
};
|
||||
|
||||
@@ -1926,6 +2001,242 @@ async fn handle_dns_watch(cli: &Cli, args: DnsWatchArgs) -> i32 {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize)]
|
||||
struct DnsLeakStatusReport {
|
||||
pub policy: wtfnet_dnsleak::PolicySummary,
|
||||
pub interfaces: Vec<wtfnet_platform::NetInterface>,
|
||||
pub routes: Vec<wtfnet_platform::RouteEntry>,
|
||||
pub dns: wtfnet_platform::DnsConfigSnapshot,
|
||||
}
|
||||
|
||||
async fn handle_dns_leak_status(cli: &Cli, args: DnsLeakStatusArgs) -> i32 {
|
||||
let platform = platform();
|
||||
let interfaces = match platform.sys.interfaces().await {
|
||||
Ok(value) => value,
|
||||
Err(err) => return emit_platform_error(cli, err),
|
||||
};
|
||||
let routes = match platform.sys.routes().await {
|
||||
Ok(value) => value,
|
||||
Err(err) => return emit_platform_error(cli, err),
|
||||
};
|
||||
let dns = match platform.sys.dns_config().await {
|
||||
Ok(value) => value,
|
||||
Err(err) => return emit_platform_error(cli, err),
|
||||
};
|
||||
let policy = match resolve_leak_policy(&args.profile, args.policy.as_ref(), &interfaces) {
|
||||
Ok(policy) => policy,
|
||||
Err(err) => {
|
||||
eprintln!("{err}");
|
||||
return ExitKind::Usage.code();
|
||||
}
|
||||
};
|
||||
|
||||
let report = DnsLeakStatusReport {
|
||||
policy: policy.summary(),
|
||||
interfaces,
|
||||
routes,
|
||||
dns,
|
||||
};
|
||||
|
||||
if cli.json {
|
||||
let meta = Meta::new("wtfnet", env!("CARGO_PKG_VERSION"), false);
|
||||
let mut command_args = Vec::new();
|
||||
if let Some(profile) = args.profile {
|
||||
command_args.push("--profile".to_string());
|
||||
command_args.push(profile);
|
||||
}
|
||||
if let Some(policy_path) = args.policy {
|
||||
command_args.push("--policy".to_string());
|
||||
command_args.push(policy_path.display().to_string());
|
||||
}
|
||||
let command = CommandInfo::new("dns leak status", command_args);
|
||||
let envelope = CommandEnvelope::new(meta, command, report);
|
||||
emit_json(cli, &envelope)
|
||||
} else {
|
||||
println!("policy: {:?}", report.policy.profile);
|
||||
if !report.policy.allowed_ifaces.is_empty() {
|
||||
println!("allowed ifaces: {}", report.policy.allowed_ifaces.join(", "));
|
||||
}
|
||||
if !report.policy.allowed_destinations.is_empty() {
|
||||
println!(
|
||||
"allowed destinations: {}",
|
||||
report.policy.allowed_destinations.join(", ")
|
||||
);
|
||||
}
|
||||
if !report.policy.allowed_ports.is_empty() {
|
||||
println!(
|
||||
"allowed ports: {}",
|
||||
report
|
||||
.policy
|
||||
.allowed_ports
|
||||
.iter()
|
||||
.map(|port| port.to_string())
|
||||
.collect::<Vec<_>>()
|
||||
.join(", ")
|
||||
);
|
||||
}
|
||||
println!("interfaces: {}", report.interfaces.len());
|
||||
println!("routes: {}", report.routes.len());
|
||||
println!("dns servers: {}", report.dns.servers.join(", "));
|
||||
ExitKind::Ok.code()
|
||||
}
|
||||
}
|
||||
|
||||
async fn handle_dns_leak_watch(cli: &Cli, args: DnsLeakWatchArgs) -> i32 {
|
||||
if args.iface_diag {
|
||||
return handle_dns_leak_iface_diag(cli).await;
|
||||
}
|
||||
let duration_ms = match parse_duration_ms(&args.duration) {
|
||||
Ok(value) => value,
|
||||
Err(err) => {
|
||||
eprintln!("{err}");
|
||||
return ExitKind::Usage.code();
|
||||
}
|
||||
};
|
||||
let privacy = match parse_leak_privacy(&args.privacy) {
|
||||
Ok(value) => value,
|
||||
Err(err) => {
|
||||
eprintln!("{err}");
|
||||
return ExitKind::Usage.code();
|
||||
}
|
||||
};
|
||||
let platform = platform();
|
||||
let interfaces = match platform.sys.interfaces().await {
|
||||
Ok(value) => value,
|
||||
Err(err) => return emit_platform_error(cli, err),
|
||||
};
|
||||
let policy = match resolve_leak_policy(&args.profile, args.policy.as_ref(), &interfaces) {
|
||||
Ok(policy) => policy,
|
||||
Err(err) => {
|
||||
eprintln!("{err}");
|
||||
return ExitKind::Usage.code();
|
||||
}
|
||||
};
|
||||
|
||||
let options = wtfnet_dnsleak::LeakWatchOptions {
|
||||
duration_ms,
|
||||
iface: args.iface.clone(),
|
||||
policy,
|
||||
privacy,
|
||||
include_events: !args.summary_only,
|
||||
};
|
||||
|
||||
let report = match wtfnet_dnsleak::watch(options, Some(&*platform.flow_owner)).await {
|
||||
Ok(report) => report,
|
||||
Err(err) => {
|
||||
eprintln!("dns leak watch failed: {err}");
|
||||
return ExitKind::Failed.code();
|
||||
}
|
||||
};
|
||||
|
||||
if let Some(path) = args.out.as_ref() {
|
||||
if let Ok(payload) = serde_json::to_string_pretty(&report) {
|
||||
if let Err(err) = std::fs::write(path, payload) {
|
||||
eprintln!("failed to write report: {err}");
|
||||
return ExitKind::Failed.code();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if cli.json {
|
||||
let meta = Meta::new("wtfnet", env!("CARGO_PKG_VERSION"), false);
|
||||
let mut command_args = vec!["--duration".to_string(), args.duration];
|
||||
if let Some(iface) = args.iface {
|
||||
command_args.push("--iface".to_string());
|
||||
command_args.push(iface);
|
||||
}
|
||||
if let Some(profile) = args.profile {
|
||||
command_args.push("--profile".to_string());
|
||||
command_args.push(profile);
|
||||
}
|
||||
if let Some(policy_path) = args.policy {
|
||||
command_args.push("--policy".to_string());
|
||||
command_args.push(policy_path.display().to_string());
|
||||
}
|
||||
if let Some(out) = args.out {
|
||||
command_args.push("--out".to_string());
|
||||
command_args.push(out.display().to_string());
|
||||
}
|
||||
if args.summary_only {
|
||||
command_args.push("--summary-only".to_string());
|
||||
}
|
||||
command_args.push("--privacy".to_string());
|
||||
command_args.push(args.privacy);
|
||||
let command = CommandInfo::new("dns leak watch", command_args);
|
||||
let envelope = CommandEnvelope::new(meta, command, report);
|
||||
emit_json(cli, &envelope)
|
||||
} else {
|
||||
print_leak_summary(&report);
|
||||
if !report.events.is_empty() {
|
||||
for event in report.events {
|
||||
println!(
|
||||
"[{:?}] {:?} {}:{} via {:?}",
|
||||
event.severity, event.leak_type, event.dst_ip, event.dst_port, event.route_class
|
||||
);
|
||||
if let Some(qname) = event.qname.as_ref() {
|
||||
println!(" qname: {}", qname);
|
||||
}
|
||||
if let Some(process) = event.process_name.as_ref() {
|
||||
println!(" process: {}", process);
|
||||
}
|
||||
}
|
||||
}
|
||||
ExitKind::Ok.code()
|
||||
}
|
||||
}
|
||||
|
||||
async fn handle_dns_leak_iface_diag(_cli: &Cli) -> i32 {
|
||||
match wtfnet_dnsleak::iface_diagnostics() {
|
||||
Ok(entries) => {
|
||||
for entry in entries {
|
||||
println!("iface: {} open: {} {}", entry.name, entry.open_ok, entry.error);
|
||||
}
|
||||
ExitKind::Ok.code()
|
||||
}
|
||||
Err(err) => {
|
||||
eprintln!("iface diag failed: {err}");
|
||||
ExitKind::Failed.code()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async fn handle_dns_leak_report(cli: &Cli, args: DnsLeakReportArgs) -> i32 {
|
||||
let privacy = match parse_leak_privacy(&args.privacy) {
|
||||
Ok(value) => value,
|
||||
Err(err) => {
|
||||
eprintln!("{err}");
|
||||
return ExitKind::Usage.code();
|
||||
}
|
||||
};
|
||||
let payload = match std::fs::read_to_string(&args.path) {
|
||||
Ok(value) => value,
|
||||
Err(err) => {
|
||||
eprintln!("failed to read report: {err}");
|
||||
return ExitKind::Failed.code();
|
||||
}
|
||||
};
|
||||
let mut report: wtfnet_dnsleak::LeakReport = match serde_json::from_str(&payload) {
|
||||
Ok(value) => value,
|
||||
Err(err) => {
|
||||
eprintln!("failed to parse report: {err}");
|
||||
return ExitKind::Failed.code();
|
||||
}
|
||||
};
|
||||
for event in report.events.iter_mut() {
|
||||
wtfnet_dnsleak::apply_privacy(event, privacy);
|
||||
}
|
||||
|
||||
if cli.json {
|
||||
let meta = Meta::new("wtfnet", env!("CARGO_PKG_VERSION"), false);
|
||||
let command = CommandInfo::new("dns leak report", vec![args.path.display().to_string()]);
|
||||
let envelope = CommandEnvelope::new(meta, command, report);
|
||||
emit_json(cli, &envelope)
|
||||
} else {
|
||||
print_leak_summary(&report);
|
||||
ExitKind::Ok.code()
|
||||
}
|
||||
}
|
||||
|
||||
async fn handle_calc_subnet(cli: &Cli, args: CalcSubnetArgs) -> i32 {
|
||||
let input = match normalize_subnet_input(&args.input) {
|
||||
Ok(value) => value,
|
||||
@@ -2335,6 +2646,81 @@ fn parse_alpn(value: Option<&str>) -> Vec<String> {
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn parse_leak_privacy(value: &str) -> Result<wtfnet_dnsleak::PrivacyMode, String> {
|
||||
match value.to_ascii_lowercase().as_str() {
|
||||
"full" => Ok(wtfnet_dnsleak::PrivacyMode::Full),
|
||||
"redacted" => Ok(wtfnet_dnsleak::PrivacyMode::Redacted),
|
||||
"minimal" => Ok(wtfnet_dnsleak::PrivacyMode::Minimal),
|
||||
_ => Err(format!("invalid privacy mode: {value}")),
|
||||
}
|
||||
}
|
||||
|
||||
fn parse_leak_profile(
|
||||
value: Option<&str>,
|
||||
) -> Result<wtfnet_dnsleak::LeakPolicyProfile, String> {
|
||||
let value = value.unwrap_or("proxy-stub");
|
||||
match value.to_ascii_lowercase().as_str() {
|
||||
"full-tunnel" => Ok(wtfnet_dnsleak::LeakPolicyProfile::FullTunnel),
|
||||
"proxy-stub" => Ok(wtfnet_dnsleak::LeakPolicyProfile::ProxyStub),
|
||||
"split" => Ok(wtfnet_dnsleak::LeakPolicyProfile::Split),
|
||||
_ => Err(format!("invalid profile: {value}")),
|
||||
}
|
||||
}
|
||||
|
||||
fn resolve_leak_policy(
|
||||
profile: &Option<String>,
|
||||
policy_path: Option<&PathBuf>,
|
||||
interfaces: &[wtfnet_platform::NetInterface],
|
||||
) -> Result<wtfnet_dnsleak::LeakPolicy, String> {
|
||||
if let Some(path) = policy_path {
|
||||
let payload = std::fs::read_to_string(path)
|
||||
.map_err(|err| format!("failed to read policy: {err}"))?;
|
||||
let policy: wtfnet_dnsleak::LeakPolicy = serde_json::from_str(&payload)
|
||||
.map_err(|err| format!("failed to parse policy: {err}"))?;
|
||||
return Ok(policy);
|
||||
}
|
||||
let profile = parse_leak_profile(profile.as_deref())?;
|
||||
let iface_names = interfaces.iter().map(|iface| iface.name.clone()).collect::<Vec<_>>();
|
||||
Ok(wtfnet_dnsleak::LeakPolicy::from_profile(
|
||||
profile,
|
||||
&iface_names,
|
||||
))
|
||||
}
|
||||
|
||||
fn print_leak_summary(report: &wtfnet_dnsleak::LeakReport) {
|
||||
println!("leaks: {}", report.summary.total);
|
||||
if !report.summary.by_type.is_empty() {
|
||||
let items = report
|
||||
.summary
|
||||
.by_type
|
||||
.iter()
|
||||
.map(|entry| format!("{:?}={}", entry.leak_type, entry.count))
|
||||
.collect::<Vec<_>>()
|
||||
.join(", ");
|
||||
println!("by type: {items}");
|
||||
}
|
||||
if !report.summary.top_processes.is_empty() {
|
||||
let items = report
|
||||
.summary
|
||||
.top_processes
|
||||
.iter()
|
||||
.map(|entry| format!("{}={}", entry.key, entry.count))
|
||||
.collect::<Vec<_>>()
|
||||
.join(", ");
|
||||
println!("top processes: {items}");
|
||||
}
|
||||
if !report.summary.top_destinations.is_empty() {
|
||||
let items = report
|
||||
.summary
|
||||
.top_destinations
|
||||
.iter()
|
||||
.map(|entry| format!("{}={}", entry.key, entry.count))
|
||||
.collect::<Vec<_>>()
|
||||
.join(", ");
|
||||
println!("top destinations: {items}");
|
||||
}
|
||||
}
|
||||
|
||||
fn emit_tls_report<T: serde::Serialize>(cli: &Cli, name: &str, report: T) -> i32 {
|
||||
if cli.json {
|
||||
let meta = Meta::new("wtfnet", env!("CARGO_PKG_VERSION"), false);
|
||||
@@ -2447,6 +2833,86 @@ async fn handle_discover_ssdp(cli: &Cli, args: DiscoverSsdpArgs) -> i32 {
|
||||
}
|
||||
}
|
||||
|
||||
async fn handle_discover_llmnr(cli: &Cli, args: DiscoverLlmnrArgs) -> i32 {
|
||||
let duration_ms = match parse_duration_ms(&args.duration) {
|
||||
Ok(value) => value,
|
||||
Err(err) => {
|
||||
eprintln!("{err}");
|
||||
return ExitKind::Usage.code();
|
||||
}
|
||||
};
|
||||
let options = wtfnet_discover::LlmnrOptions {
|
||||
duration_ms,
|
||||
name: args.name.clone(),
|
||||
};
|
||||
match wtfnet_discover::llmnr_discover(options).await {
|
||||
Ok(report) => {
|
||||
if cli.json {
|
||||
let meta = Meta::new("wtfnet", env!("CARGO_PKG_VERSION"), false);
|
||||
let mut command_args = vec!["--duration".to_string(), args.duration];
|
||||
if let Some(name) = args.name {
|
||||
command_args.push("--name".to_string());
|
||||
command_args.push(name);
|
||||
}
|
||||
let command = CommandInfo::new("discover llmnr", command_args);
|
||||
let envelope = CommandEnvelope::new(meta, command, report);
|
||||
emit_json(cli, &envelope)
|
||||
} else {
|
||||
println!("query: {}", report.name);
|
||||
for answer in report.answers {
|
||||
println!("from: {}", answer.from);
|
||||
println!(" name: {}", answer.name);
|
||||
println!(" type: {}", answer.record_type);
|
||||
println!(" data: {}", answer.data);
|
||||
println!(" ttl: {}", answer.ttl);
|
||||
}
|
||||
ExitKind::Ok.code()
|
||||
}
|
||||
}
|
||||
Err(err) => {
|
||||
eprintln!("llmnr discover failed: {err}");
|
||||
ExitKind::Failed.code()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async fn handle_discover_nbns(cli: &Cli, args: DiscoverNbnsArgs) -> i32 {
|
||||
let duration_ms = match parse_duration_ms(&args.duration) {
|
||||
Ok(value) => value,
|
||||
Err(err) => {
|
||||
eprintln!("{err}");
|
||||
return ExitKind::Usage.code();
|
||||
}
|
||||
};
|
||||
let options = wtfnet_discover::NbnsOptions { duration_ms };
|
||||
match wtfnet_discover::nbns_discover(options).await {
|
||||
Ok(report) => {
|
||||
if cli.json {
|
||||
let meta = Meta::new("wtfnet", env!("CARGO_PKG_VERSION"), false);
|
||||
let command = CommandInfo::new(
|
||||
"discover nbns",
|
||||
vec!["--duration".to_string(), args.duration],
|
||||
);
|
||||
let envelope = CommandEnvelope::new(meta, command, report);
|
||||
emit_json(cli, &envelope)
|
||||
} else {
|
||||
for node in report.nodes {
|
||||
println!("from: {}", node.from);
|
||||
if node.names.is_empty() {
|
||||
continue;
|
||||
}
|
||||
println!(" names: {}", node.names.join(", "));
|
||||
}
|
||||
ExitKind::Ok.code()
|
||||
}
|
||||
}
|
||||
Err(err) => {
|
||||
eprintln!("nbns discover failed: {err}");
|
||||
ExitKind::Failed.code()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async fn handle_diag(cli: &Cli, args: DiagArgs) -> i32 {
|
||||
let options = wtfnet_diag::DiagOptions {
|
||||
dns_detect_domain: args.dns_detect.clone(),
|
||||
|
||||
@@ -4,6 +4,7 @@ version = "0.1.0"
|
||||
edition = "2024"
|
||||
|
||||
[dependencies]
|
||||
hickory-proto = "0.24"
|
||||
mdns-sd = "0.8"
|
||||
serde = { version = "1", features = ["derive"] }
|
||||
thiserror = "2"
|
||||
|
||||
@@ -1,7 +1,9 @@
|
||||
use hickory_proto::op::{Message, MessageType, Query};
|
||||
use hickory_proto::rr::{Name, RData, RecordType};
|
||||
use mdns_sd::{ServiceDaemon, ServiceEvent, ServiceInfo};
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::collections::{BTreeMap, BTreeSet};
|
||||
use std::net::{SocketAddr, UdpSocket};
|
||||
use std::net::{IpAddr, SocketAddr, UdpSocket};
|
||||
use std::time::{Duration, Instant};
|
||||
use thiserror::Error;
|
||||
|
||||
@@ -24,6 +26,17 @@ pub struct SsdpOptions {
|
||||
pub duration_ms: u64,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct LlmnrOptions {
|
||||
pub duration_ms: u64,
|
||||
pub name: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct NbnsOptions {
|
||||
pub duration_ms: u64,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct MdnsService {
|
||||
pub service_type: String,
|
||||
@@ -56,6 +69,34 @@ pub struct SsdpReport {
|
||||
pub services: Vec<SsdpService>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct LlmnrAnswer {
|
||||
pub from: String,
|
||||
pub name: String,
|
||||
pub record_type: String,
|
||||
pub data: String,
|
||||
pub ttl: u32,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct LlmnrReport {
|
||||
pub duration_ms: u64,
|
||||
pub name: String,
|
||||
pub answers: Vec<LlmnrAnswer>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct NbnsNodeStatus {
|
||||
pub from: String,
|
||||
pub names: Vec<String>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct NbnsReport {
|
||||
pub duration_ms: u64,
|
||||
pub nodes: Vec<NbnsNodeStatus>,
|
||||
}
|
||||
|
||||
pub async fn mdns_discover(options: MdnsOptions) -> Result<MdnsReport, DiscoverError> {
|
||||
tokio::task::spawn_blocking(move || mdns_discover_blocking(options))
|
||||
.await
|
||||
@@ -68,6 +109,18 @@ pub async fn ssdp_discover(options: SsdpOptions) -> Result<SsdpReport, DiscoverE
|
||||
.map_err(|err| DiscoverError::Io(err.to_string()))?
|
||||
}
|
||||
|
||||
pub async fn llmnr_discover(options: LlmnrOptions) -> Result<LlmnrReport, DiscoverError> {
|
||||
tokio::task::spawn_blocking(move || llmnr_discover_blocking(options))
|
||||
.await
|
||||
.map_err(|err| DiscoverError::Io(err.to_string()))?
|
||||
}
|
||||
|
||||
pub async fn nbns_discover(options: NbnsOptions) -> Result<NbnsReport, DiscoverError> {
|
||||
tokio::task::spawn_blocking(move || nbns_discover_blocking(options))
|
||||
.await
|
||||
.map_err(|err| DiscoverError::Io(err.to_string()))?
|
||||
}
|
||||
|
||||
fn mdns_discover_blocking(options: MdnsOptions) -> Result<MdnsReport, DiscoverError> {
|
||||
let daemon = ServiceDaemon::new().map_err(|err| DiscoverError::Mdns(err.to_string()))?;
|
||||
let mut service_types = BTreeSet::new();
|
||||
@@ -174,6 +227,94 @@ fn ssdp_discover_blocking(options: SsdpOptions) -> Result<SsdpReport, DiscoverEr
|
||||
})
|
||||
}
|
||||
|
||||
fn llmnr_discover_blocking(options: LlmnrOptions) -> Result<LlmnrReport, DiscoverError> {
|
||||
let socket = UdpSocket::bind("0.0.0.0:0").map_err(|err| DiscoverError::Io(err.to_string()))?;
|
||||
socket
|
||||
.set_read_timeout(Some(Duration::from_millis(200)))
|
||||
.map_err(|err| DiscoverError::Io(err.to_string()))?;
|
||||
|
||||
let name = options
|
||||
.name
|
||||
.clone()
|
||||
.filter(|value| !value.trim().is_empty())
|
||||
.unwrap_or_else(|| "wpad".to_string());
|
||||
|
||||
let query = build_llmnr_query(&name)
|
||||
.map_err(|err| DiscoverError::Io(format!("llmnr build query: {err}")))?;
|
||||
let target = "224.0.0.252:5355";
|
||||
let _ = socket.send_to(&query, target);
|
||||
|
||||
let mut answers = Vec::new();
|
||||
let mut seen = BTreeSet::new();
|
||||
let deadline = Instant::now() + Duration::from_millis(options.duration_ms);
|
||||
let mut buf = [0u8; 2048];
|
||||
|
||||
while Instant::now() < deadline {
|
||||
match socket.recv_from(&mut buf) {
|
||||
Ok((len, from)) => {
|
||||
if let Some(entries) = parse_llmnr_response(&buf[..len], from.ip()) {
|
||||
for entry in entries {
|
||||
let key = format!(
|
||||
"{}|{}|{}|{}",
|
||||
entry.from, entry.name, entry.record_type, entry.data
|
||||
);
|
||||
if seen.insert(key) {
|
||||
answers.push(entry);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Err(_) => continue,
|
||||
}
|
||||
}
|
||||
|
||||
Ok(LlmnrReport {
|
||||
duration_ms: options.duration_ms,
|
||||
name,
|
||||
answers,
|
||||
})
|
||||
}
|
||||
|
||||
fn nbns_discover_blocking(options: NbnsOptions) -> Result<NbnsReport, DiscoverError> {
|
||||
let socket = UdpSocket::bind("0.0.0.0:0").map_err(|err| DiscoverError::Io(err.to_string()))?;
|
||||
socket
|
||||
.set_broadcast(true)
|
||||
.map_err(|err| DiscoverError::Io(err.to_string()))?;
|
||||
socket
|
||||
.set_read_timeout(Some(Duration::from_millis(200)))
|
||||
.map_err(|err| DiscoverError::Io(err.to_string()))?;
|
||||
|
||||
let query = build_nbns_node_status_query();
|
||||
let _ = socket.send_to(&query, "255.255.255.255:137");
|
||||
|
||||
let mut nodes = Vec::new();
|
||||
let mut seen = BTreeSet::new();
|
||||
let deadline = Instant::now() + Duration::from_millis(options.duration_ms);
|
||||
let mut buf = [0u8; 2048];
|
||||
|
||||
while Instant::now() < deadline {
|
||||
match socket.recv_from(&mut buf) {
|
||||
Ok((len, from)) => {
|
||||
if let Some(names) = parse_nbns_node_status(&buf[..len]) {
|
||||
let key = format!("{}|{}", from.ip(), names.join(","));
|
||||
if seen.insert(key) {
|
||||
nodes.push(NbnsNodeStatus {
|
||||
from: from.ip().to_string(),
|
||||
names,
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
Err(_) => continue,
|
||||
}
|
||||
}
|
||||
|
||||
Ok(NbnsReport {
|
||||
duration_ms: options.duration_ms,
|
||||
nodes,
|
||||
})
|
||||
}
|
||||
|
||||
fn parse_ssdp_response(payload: &str, from: SocketAddr) -> Option<SsdpService> {
|
||||
let mut st = None;
|
||||
let mut usn = None;
|
||||
@@ -207,3 +348,183 @@ fn parse_ssdp_response(payload: &str, from: SocketAddr) -> Option<SsdpService> {
|
||||
server,
|
||||
})
|
||||
}
|
||||
|
||||
fn build_llmnr_query(name: &str) -> Result<Vec<u8>, String> {
|
||||
let name = Name::from_ascii(name).map_err(|err| format!("invalid name: {err}"))?;
|
||||
let mut message = Message::new();
|
||||
message
|
||||
.set_id(0)
|
||||
.set_message_type(MessageType::Query)
|
||||
.set_recursion_desired(false)
|
||||
.add_query(Query::query(name.clone(), RecordType::A))
|
||||
.add_query(Query::query(name, RecordType::AAAA));
|
||||
message.to_vec().map_err(|err| err.to_string())
|
||||
}
|
||||
|
||||
fn parse_llmnr_response(payload: &[u8], from: IpAddr) -> Option<Vec<LlmnrAnswer>> {
|
||||
let message = Message::from_vec(payload).ok()?;
|
||||
if message.message_type() != MessageType::Response {
|
||||
return None;
|
||||
}
|
||||
let mut answers = Vec::new();
|
||||
for record in message.answers() {
|
||||
let record_type = record.record_type();
|
||||
let data = match record.data() {
|
||||
Some(RData::A(addr)) => addr.to_string(),
|
||||
Some(RData::AAAA(addr)) => addr.to_string(),
|
||||
_ => continue,
|
||||
};
|
||||
answers.push(LlmnrAnswer {
|
||||
from: from.to_string(),
|
||||
name: record.name().to_string(),
|
||||
record_type: record_type.to_string(),
|
||||
data,
|
||||
ttl: record.ttl(),
|
||||
});
|
||||
}
|
||||
if answers.is_empty() {
|
||||
None
|
||||
} else {
|
||||
Some(answers)
|
||||
}
|
||||
}
|
||||
|
||||
fn build_nbns_node_status_query() -> Vec<u8> {
|
||||
let mut buf = Vec::with_capacity(50);
|
||||
let id = nbns_query_id();
|
||||
buf.extend_from_slice(&id.to_be_bytes());
|
||||
buf.extend_from_slice(&0u16.to_be_bytes()); // flags
|
||||
buf.extend_from_slice(&1u16.to_be_bytes()); // qdcount
|
||||
buf.extend_from_slice(&0u16.to_be_bytes()); // ancount
|
||||
buf.extend_from_slice(&0u16.to_be_bytes()); // nscount
|
||||
buf.extend_from_slice(&0u16.to_be_bytes()); // arcount
|
||||
buf.extend_from_slice(&nbns_encode_name("*", 0x00));
|
||||
buf.extend_from_slice(&0x0021u16.to_be_bytes()); // NBSTAT
|
||||
buf.extend_from_slice(&0x0001u16.to_be_bytes()); // IN
|
||||
buf
|
||||
}
|
||||
|
||||
fn nbns_query_id() -> u16 {
|
||||
let nanos = std::time::SystemTime::now()
|
||||
.duration_since(std::time::UNIX_EPOCH)
|
||||
.unwrap_or_default()
|
||||
.subsec_nanos();
|
||||
(nanos & 0xffff) as u16
|
||||
}
|
||||
|
||||
fn nbns_encode_name(name: &str, suffix: u8) -> Vec<u8> {
|
||||
let mut raw = [b' '; 16];
|
||||
let mut bytes = name.as_bytes().to_vec();
|
||||
for byte in bytes.iter_mut() {
|
||||
byte.make_ascii_uppercase();
|
||||
}
|
||||
for (idx, byte) in bytes.iter().take(15).enumerate() {
|
||||
raw[idx] = *byte;
|
||||
}
|
||||
raw[15] = suffix;
|
||||
|
||||
let mut encoded = Vec::with_capacity(34);
|
||||
encoded.push(32);
|
||||
for byte in raw {
|
||||
let high = ((byte >> 4) & 0x0f) + b'A';
|
||||
let low = (byte & 0x0f) + b'A';
|
||||
encoded.push(high);
|
||||
encoded.push(low);
|
||||
}
|
||||
encoded.push(0);
|
||||
encoded
|
||||
}
|
||||
|
||||
fn parse_nbns_node_status(payload: &[u8]) -> Option<Vec<String>> {
|
||||
if payload.len() < 12 {
|
||||
return None;
|
||||
}
|
||||
let flags = u16::from_be_bytes([payload[2], payload[3]]);
|
||||
if flags & 0x8000 == 0 {
|
||||
return None;
|
||||
}
|
||||
let qdcount = u16::from_be_bytes([payload[4], payload[5]]) as usize;
|
||||
let ancount = u16::from_be_bytes([payload[6], payload[7]]) as usize;
|
||||
let mut offset = 12;
|
||||
for _ in 0..qdcount {
|
||||
offset = skip_dns_name(payload, offset)?;
|
||||
if offset + 4 > payload.len() {
|
||||
return None;
|
||||
}
|
||||
offset += 4;
|
||||
}
|
||||
|
||||
let mut names = Vec::new();
|
||||
for _ in 0..ancount {
|
||||
offset = skip_dns_name(payload, offset)?;
|
||||
if offset + 10 > payload.len() {
|
||||
return None;
|
||||
}
|
||||
let rr_type = u16::from_be_bytes([payload[offset], payload[offset + 1]]);
|
||||
let _rr_class = u16::from_be_bytes([payload[offset + 2], payload[offset + 3]]);
|
||||
let _ttl = u32::from_be_bytes([
|
||||
payload[offset + 4],
|
||||
payload[offset + 5],
|
||||
payload[offset + 6],
|
||||
payload[offset + 7],
|
||||
]);
|
||||
let rdlength = u16::from_be_bytes([payload[offset + 8], payload[offset + 9]]) as usize;
|
||||
offset += 10;
|
||||
if offset + rdlength > payload.len() {
|
||||
return None;
|
||||
}
|
||||
if rr_type == 0x0021 && rdlength > 0 {
|
||||
if let Some(list) = parse_nbns_name_list(&payload[offset..offset + rdlength]) {
|
||||
names.extend(list);
|
||||
}
|
||||
}
|
||||
offset += rdlength;
|
||||
}
|
||||
|
||||
if names.is_empty() {
|
||||
None
|
||||
} else {
|
||||
Some(names)
|
||||
}
|
||||
}
|
||||
|
||||
fn parse_nbns_name_list(payload: &[u8]) -> Option<Vec<String>> {
|
||||
let count = *payload.first()? as usize;
|
||||
let mut offset = 1;
|
||||
let mut names = Vec::new();
|
||||
for _ in 0..count {
|
||||
if offset + 18 > payload.len() {
|
||||
return None;
|
||||
}
|
||||
let name_bytes = &payload[offset..offset + 15];
|
||||
let suffix = payload[offset + 15];
|
||||
let name = String::from_utf8_lossy(name_bytes)
|
||||
.trim_end()
|
||||
.to_string();
|
||||
names.push(format!("{name}<{suffix:02x}>"));
|
||||
offset += 18;
|
||||
}
|
||||
Some(names)
|
||||
}
|
||||
|
||||
fn skip_dns_name(payload: &[u8], mut offset: usize) -> Option<usize> {
|
||||
if offset >= payload.len() {
|
||||
return None;
|
||||
}
|
||||
loop {
|
||||
let len = *payload.get(offset)?;
|
||||
if len & 0xc0 == 0xc0 {
|
||||
if offset + 1 >= payload.len() {
|
||||
return None;
|
||||
}
|
||||
return Some(offset + 2);
|
||||
}
|
||||
if len == 0 {
|
||||
return Some(offset + 1);
|
||||
}
|
||||
offset += 1 + len as usize;
|
||||
if offset >= payload.len() {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
17
crates/wtfnet-dnsleak/Cargo.toml
Normal file
17
crates/wtfnet-dnsleak/Cargo.toml
Normal file
@@ -0,0 +1,17 @@
|
||||
[package]
|
||||
name = "wtfnet-dnsleak"
|
||||
version = "0.1.0"
|
||||
edition = "2024"
|
||||
|
||||
[dependencies]
|
||||
hickory-proto = "0.24"
|
||||
ipnet = { version = "2", features = ["serde"] }
|
||||
serde = { version = "1", features = ["derive"] }
|
||||
thiserror = "2"
|
||||
tokio = { version = "1", features = ["rt"] }
|
||||
tracing = "0.1"
|
||||
wtfnet-platform = { path = "../wtfnet-platform" }
|
||||
pnet = { version = "0.34", optional = true }
|
||||
|
||||
[features]
|
||||
pcap = ["dep:pnet"]
|
||||
32
crates/wtfnet-dnsleak/src/classify.rs
Normal file
32
crates/wtfnet-dnsleak/src/classify.rs
Normal file
@@ -0,0 +1,32 @@
|
||||
use crate::report::LeakTransport;
|
||||
use hickory_proto::op::{Message, MessageType};
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::net::IpAddr;
|
||||
use wtfnet_platform::FlowProtocol;
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct ClassifiedEvent {
|
||||
pub timestamp_ms: u128,
|
||||
pub proto: FlowProtocol,
|
||||
pub src_ip: IpAddr,
|
||||
pub src_port: u16,
|
||||
pub dst_ip: IpAddr,
|
||||
pub dst_port: u16,
|
||||
pub iface_name: Option<String>,
|
||||
pub transport: LeakTransport,
|
||||
pub qname: Option<String>,
|
||||
pub qtype: Option<String>,
|
||||
pub rcode: Option<String>,
|
||||
}
|
||||
|
||||
pub fn classify_dns_query(payload: &[u8]) -> Option<(String, String, String)> {
|
||||
let message = Message::from_vec(payload).ok()?;
|
||||
if message.message_type() != MessageType::Query {
|
||||
return None;
|
||||
}
|
||||
let query = message.queries().first()?;
|
||||
let qname = query.name().to_utf8();
|
||||
let qtype = query.query_type().to_string();
|
||||
let rcode = message.response_code().to_string();
|
||||
Some((qname, qtype, rcode))
|
||||
}
|
||||
102
crates/wtfnet-dnsleak/src/lib.rs
Normal file
102
crates/wtfnet-dnsleak/src/lib.rs
Normal file
@@ -0,0 +1,102 @@
|
||||
mod classify;
|
||||
mod policy;
|
||||
mod privacy;
|
||||
mod report;
|
||||
mod route;
|
||||
mod rules;
|
||||
mod sensor;
|
||||
|
||||
use crate::classify::ClassifiedEvent;
|
||||
use crate::sensor::capture_events;
|
||||
use std::time::Instant;
|
||||
use thiserror::Error;
|
||||
use tracing::debug;
|
||||
use wtfnet_platform::{FlowOwnerProvider, FlowTuple};
|
||||
|
||||
pub use crate::policy::{LeakPolicy, LeakPolicyProfile, PolicySummary};
|
||||
pub use crate::privacy::{apply_privacy, PrivacyMode};
|
||||
pub use crate::report::{LeakEvent, LeakReport, LeakSummary, LeakTransport, RouteClass, Severity};
|
||||
pub use crate::sensor::{iface_diagnostics, IfaceDiag};
|
||||
|
||||
#[derive(Debug, Error)]
|
||||
pub enum DnsLeakError {
|
||||
#[error("not supported: {0}")]
|
||||
NotSupported(String),
|
||||
#[error("io error: {0}")]
|
||||
Io(String),
|
||||
#[error("policy error: {0}")]
|
||||
Policy(String),
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct LeakWatchOptions {
|
||||
pub duration_ms: u64,
|
||||
pub iface: Option<String>,
|
||||
pub policy: LeakPolicy,
|
||||
pub privacy: PrivacyMode,
|
||||
pub include_events: bool,
|
||||
}
|
||||
|
||||
pub async fn watch(
|
||||
options: LeakWatchOptions,
|
||||
flow_owner: Option<&dyn FlowOwnerProvider>,
|
||||
) -> Result<LeakReport, DnsLeakError> {
|
||||
debug!(
|
||||
duration_ms = options.duration_ms,
|
||||
iface = ?options.iface,
|
||||
include_events = options.include_events,
|
||||
"dns leak watch start"
|
||||
);
|
||||
let start = Instant::now();
|
||||
let events = capture_events(&options).await?;
|
||||
let mut leak_events = Vec::new();
|
||||
|
||||
for event in events {
|
||||
let enriched = enrich_event(event, flow_owner).await;
|
||||
if let Some(decision) = rules::evaluate(&enriched, &options.policy) {
|
||||
let mut leak_event = report::LeakEvent::from_decision(enriched, decision);
|
||||
privacy::apply_privacy(&mut leak_event, options.privacy);
|
||||
leak_events.push(leak_event);
|
||||
}
|
||||
}
|
||||
|
||||
let summary = LeakSummary::from_events(&leak_events);
|
||||
let report = LeakReport {
|
||||
duration_ms: start.elapsed().as_millis() as u64,
|
||||
policy: options.policy.summary(),
|
||||
summary,
|
||||
events: if options.include_events {
|
||||
leak_events
|
||||
} else {
|
||||
Vec::new()
|
||||
},
|
||||
};
|
||||
Ok(report)
|
||||
}
|
||||
|
||||
async fn enrich_event(
|
||||
event: ClassifiedEvent,
|
||||
flow_owner: Option<&dyn FlowOwnerProvider>,
|
||||
) -> report::EnrichedEvent {
|
||||
let mut enriched = route::enrich_route(event);
|
||||
if let Some(provider) = flow_owner {
|
||||
let flow = FlowTuple {
|
||||
proto: enriched.proto,
|
||||
src_ip: enriched.src_ip,
|
||||
src_port: enriched.src_port,
|
||||
dst_ip: enriched.dst_ip,
|
||||
dst_port: enriched.dst_port,
|
||||
};
|
||||
match provider.owner_of(flow).await {
|
||||
Ok(result) => {
|
||||
enriched.owner = result.owner;
|
||||
enriched.owner_confidence = result.confidence;
|
||||
enriched.owner_failure = result.failure_reason;
|
||||
}
|
||||
Err(err) => {
|
||||
enriched.owner_failure = Some(err.message);
|
||||
}
|
||||
}
|
||||
}
|
||||
enriched
|
||||
}
|
||||
113
crates/wtfnet-dnsleak/src/policy.rs
Normal file
113
crates/wtfnet-dnsleak/src/policy.rs
Normal file
@@ -0,0 +1,113 @@
|
||||
use ipnet::IpNet;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
|
||||
#[serde(rename_all = "kebab-case")]
|
||||
pub enum LeakPolicyProfile {
|
||||
FullTunnel,
|
||||
ProxyStub,
|
||||
Split,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct LeakPolicy {
|
||||
pub profile: LeakPolicyProfile,
|
||||
pub allowed_ifaces: Vec<String>,
|
||||
pub tunnel_ifaces: Vec<String>,
|
||||
pub loopback_ifaces: Vec<String>,
|
||||
pub allowed_destinations: Vec<IpNet>,
|
||||
pub allowed_ports: Vec<u16>,
|
||||
pub allowed_processes: Vec<String>,
|
||||
pub proxy_required_domains: Vec<String>,
|
||||
pub allowlist_domains: Vec<String>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct PolicySummary {
|
||||
pub profile: LeakPolicyProfile,
|
||||
pub allowed_ifaces: Vec<String>,
|
||||
pub tunnel_ifaces: Vec<String>,
|
||||
pub allowed_destinations: Vec<String>,
|
||||
pub allowed_ports: Vec<u16>,
|
||||
pub allowed_processes: Vec<String>,
|
||||
}
|
||||
|
||||
impl LeakPolicy {
|
||||
pub fn from_profile(profile: LeakPolicyProfile, ifaces: &[String]) -> Self {
|
||||
let loopback_ifaces = detect_loopback_ifaces(ifaces);
|
||||
let tunnel_ifaces = detect_tunnel_ifaces(ifaces);
|
||||
let allowed_ifaces = match profile {
|
||||
LeakPolicyProfile::FullTunnel | LeakPolicyProfile::ProxyStub => {
|
||||
merge_lists(&loopback_ifaces, &tunnel_ifaces)
|
||||
}
|
||||
LeakPolicyProfile::Split => merge_lists(&loopback_ifaces, &tunnel_ifaces),
|
||||
};
|
||||
|
||||
LeakPolicy {
|
||||
profile,
|
||||
allowed_ifaces,
|
||||
tunnel_ifaces,
|
||||
loopback_ifaces,
|
||||
allowed_destinations: Vec::new(),
|
||||
allowed_ports: Vec::new(),
|
||||
allowed_processes: Vec::new(),
|
||||
proxy_required_domains: Vec::new(),
|
||||
allowlist_domains: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn summary(&self) -> PolicySummary {
|
||||
PolicySummary {
|
||||
profile: self.profile,
|
||||
allowed_ifaces: self.allowed_ifaces.clone(),
|
||||
tunnel_ifaces: self.tunnel_ifaces.clone(),
|
||||
allowed_destinations: self
|
||||
.allowed_destinations
|
||||
.iter()
|
||||
.map(|net| net.to_string())
|
||||
.collect(),
|
||||
allowed_ports: self.allowed_ports.clone(),
|
||||
allowed_processes: self.allowed_processes.clone(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn detect_loopback_ifaces(ifaces: &[String]) -> Vec<String> {
|
||||
ifaces
|
||||
.iter()
|
||||
.filter(|name| {
|
||||
let name = name.to_ascii_lowercase();
|
||||
name == "lo"
|
||||
|| name == "lo0"
|
||||
|| name.contains("loopback")
|
||||
|| name.contains("localhost")
|
||||
})
|
||||
.cloned()
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn detect_tunnel_ifaces(ifaces: &[String]) -> Vec<String> {
|
||||
ifaces
|
||||
.iter()
|
||||
.filter(|name| {
|
||||
let name = name.to_ascii_lowercase();
|
||||
name.contains("tun")
|
||||
|| name.contains("tap")
|
||||
|| name.contains("wg")
|
||||
|| name.contains("wireguard")
|
||||
|| name.contains("vpn")
|
||||
|| name.contains("ppp")
|
||||
})
|
||||
.cloned()
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn merge_lists(a: &[String], b: &[String]) -> Vec<String> {
|
||||
let mut out = Vec::new();
|
||||
for value in a.iter().chain(b.iter()) {
|
||||
if !out.iter().any(|entry| entry == value) {
|
||||
out.push(value.clone());
|
||||
}
|
||||
}
|
||||
out
|
||||
}
|
||||
35
crates/wtfnet-dnsleak/src/privacy.rs
Normal file
35
crates/wtfnet-dnsleak/src/privacy.rs
Normal file
@@ -0,0 +1,35 @@
|
||||
use crate::report::LeakEvent;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
|
||||
#[serde(rename_all = "lowercase")]
|
||||
pub enum PrivacyMode {
|
||||
Full,
|
||||
Redacted,
|
||||
Minimal,
|
||||
}
|
||||
|
||||
pub fn apply_privacy(event: &mut LeakEvent, mode: PrivacyMode) {
|
||||
match mode {
|
||||
PrivacyMode::Full => {}
|
||||
PrivacyMode::Redacted => {
|
||||
if let Some(value) = event.qname.as_ref() {
|
||||
event.qname = Some(redact_domain(value));
|
||||
}
|
||||
}
|
||||
PrivacyMode::Minimal => {
|
||||
event.qname = None;
|
||||
event.qtype = None;
|
||||
event.rcode = None;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn redact_domain(value: &str) -> String {
|
||||
let parts: Vec<&str> = value.split('.').filter(|part| !part.is_empty()).collect();
|
||||
if parts.len() >= 2 {
|
||||
format!("{}.{}", parts[parts.len() - 2], parts[parts.len() - 1])
|
||||
} else {
|
||||
value.to_string()
|
||||
}
|
||||
}
|
||||
192
crates/wtfnet-dnsleak/src/report.rs
Normal file
192
crates/wtfnet-dnsleak/src/report.rs
Normal file
@@ -0,0 +1,192 @@
|
||||
use crate::policy::PolicySummary;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::collections::{BTreeMap, HashMap};
|
||||
use std::net::IpAddr;
|
||||
use wtfnet_platform::{FlowOwner, FlowOwnerConfidence, FlowProtocol};
|
||||
|
||||
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
|
||||
#[serde(rename_all = "lowercase")]
|
||||
pub enum LeakTransport {
|
||||
Udp53,
|
||||
Tcp53,
|
||||
Dot,
|
||||
Doh,
|
||||
Unknown,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Serialize, Deserialize, PartialEq, Eq, PartialOrd, Ord, Hash)]
|
||||
#[serde(rename_all = "lowercase")]
|
||||
pub enum LeakType {
|
||||
A,
|
||||
B,
|
||||
C,
|
||||
D,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
|
||||
#[serde(rename_all = "lowercase")]
|
||||
pub enum RouteClass {
|
||||
Loopback,
|
||||
Tunnel,
|
||||
Physical,
|
||||
Unknown,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
|
||||
#[serde(rename_all = "lowercase")]
|
||||
pub enum Severity {
|
||||
P0,
|
||||
P1,
|
||||
P2,
|
||||
P3,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct EnrichedEvent {
|
||||
pub timestamp_ms: u128,
|
||||
pub proto: FlowProtocol,
|
||||
pub src_ip: IpAddr,
|
||||
pub src_port: u16,
|
||||
pub dst_ip: IpAddr,
|
||||
pub dst_port: u16,
|
||||
pub iface_name: Option<String>,
|
||||
pub transport: LeakTransport,
|
||||
pub qname: Option<String>,
|
||||
pub qtype: Option<String>,
|
||||
pub rcode: Option<String>,
|
||||
pub route_class: RouteClass,
|
||||
pub owner: Option<FlowOwner>,
|
||||
pub owner_confidence: FlowOwnerConfidence,
|
||||
pub owner_failure: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct LeakEvent {
|
||||
pub timestamp_ms: u128,
|
||||
pub transport: LeakTransport,
|
||||
pub qname: Option<String>,
|
||||
pub qtype: Option<String>,
|
||||
pub rcode: Option<String>,
|
||||
pub iface_name: Option<String>,
|
||||
pub route_class: RouteClass,
|
||||
pub dst_ip: String,
|
||||
pub dst_port: u16,
|
||||
pub pid: Option<u32>,
|
||||
pub ppid: Option<u32>,
|
||||
pub process_name: Option<String>,
|
||||
pub process_path: Option<String>,
|
||||
pub attribution_confidence: FlowOwnerConfidence,
|
||||
pub attribution_failure: Option<String>,
|
||||
pub leak_type: LeakType,
|
||||
pub severity: Severity,
|
||||
pub policy_rule_id: String,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct LeakTypeCount {
|
||||
pub leak_type: LeakType,
|
||||
pub count: usize,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct SummaryItem {
|
||||
pub key: String,
|
||||
pub count: usize,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct LeakSummary {
|
||||
pub total: usize,
|
||||
pub by_type: Vec<LeakTypeCount>,
|
||||
pub top_processes: Vec<SummaryItem>,
|
||||
pub top_destinations: Vec<SummaryItem>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct LeakReport {
|
||||
pub duration_ms: u64,
|
||||
pub policy: PolicySummary,
|
||||
pub summary: LeakSummary,
|
||||
pub events: Vec<LeakEvent>,
|
||||
}
|
||||
|
||||
impl LeakEvent {
|
||||
pub fn from_decision(event: EnrichedEvent, decision: crate::rules::LeakDecision) -> Self {
|
||||
let (pid, ppid, process_name, process_path) = event
|
||||
.owner
|
||||
.as_ref()
|
||||
.map(|owner| {
|
||||
(
|
||||
owner.pid,
|
||||
owner.ppid,
|
||||
owner.process_name.clone(),
|
||||
owner.process_path.clone(),
|
||||
)
|
||||
})
|
||||
.unwrap_or((None, None, None, None));
|
||||
|
||||
LeakEvent {
|
||||
timestamp_ms: event.timestamp_ms,
|
||||
transport: event.transport,
|
||||
qname: event.qname,
|
||||
qtype: event.qtype,
|
||||
rcode: event.rcode,
|
||||
iface_name: event.iface_name,
|
||||
route_class: event.route_class,
|
||||
dst_ip: event.dst_ip.to_string(),
|
||||
dst_port: event.dst_port,
|
||||
pid,
|
||||
ppid,
|
||||
process_name,
|
||||
process_path,
|
||||
attribution_confidence: event.owner_confidence,
|
||||
attribution_failure: event.owner_failure,
|
||||
leak_type: decision.leak_type,
|
||||
severity: decision.severity,
|
||||
policy_rule_id: decision.policy_rule_id,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl LeakSummary {
|
||||
pub fn from_events(events: &[LeakEvent]) -> Self {
|
||||
let total = events.len();
|
||||
let mut by_type_map: HashMap<LeakType, usize> = HashMap::new();
|
||||
let mut process_map: BTreeMap<String, usize> = BTreeMap::new();
|
||||
let mut dest_map: BTreeMap<String, usize> = BTreeMap::new();
|
||||
|
||||
for event in events {
|
||||
*by_type_map.entry(event.leak_type).or_insert(0) += 1;
|
||||
if let Some(name) = event.process_name.as_ref() {
|
||||
*process_map.entry(name.clone()).or_insert(0) += 1;
|
||||
}
|
||||
let dst_key = format!("{}:{}", event.dst_ip, event.dst_port);
|
||||
*dest_map.entry(dst_key).or_insert(0) += 1;
|
||||
}
|
||||
|
||||
let mut by_type = by_type_map
|
||||
.into_iter()
|
||||
.map(|(leak_type, count)| LeakTypeCount { leak_type, count })
|
||||
.collect::<Vec<_>>();
|
||||
by_type.sort_by(|a, b| a.leak_type.cmp(&b.leak_type));
|
||||
let top_processes = top_items(process_map, 5);
|
||||
let top_destinations = top_items(dest_map, 5);
|
||||
|
||||
LeakSummary {
|
||||
total,
|
||||
by_type,
|
||||
top_processes,
|
||||
top_destinations,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn top_items(map: BTreeMap<String, usize>, limit: usize) -> Vec<SummaryItem> {
|
||||
let mut items = map
|
||||
.into_iter()
|
||||
.map(|(key, count)| SummaryItem { key, count })
|
||||
.collect::<Vec<_>>();
|
||||
items.sort_by(|a, b| b.count.cmp(&a.count).then_with(|| a.key.cmp(&b.key)));
|
||||
items.truncate(limit);
|
||||
items
|
||||
}
|
||||
48
crates/wtfnet-dnsleak/src/route.rs
Normal file
48
crates/wtfnet-dnsleak/src/route.rs
Normal file
@@ -0,0 +1,48 @@
|
||||
use crate::classify::ClassifiedEvent;
|
||||
use crate::report::{EnrichedEvent, RouteClass};
|
||||
use wtfnet_platform::FlowOwnerConfidence;
|
||||
|
||||
pub fn enrich_route(event: ClassifiedEvent) -> EnrichedEvent {
|
||||
let route_class = if event.src_ip.is_loopback() || event.dst_ip.is_loopback() {
|
||||
RouteClass::Loopback
|
||||
} else if event
|
||||
.iface_name
|
||||
.as_ref()
|
||||
.map(|name| is_tunnel_iface(name))
|
||||
.unwrap_or(false)
|
||||
{
|
||||
RouteClass::Tunnel
|
||||
} else if event.iface_name.is_some() {
|
||||
RouteClass::Physical
|
||||
} else {
|
||||
RouteClass::Unknown
|
||||
};
|
||||
|
||||
EnrichedEvent {
|
||||
timestamp_ms: event.timestamp_ms,
|
||||
proto: event.proto,
|
||||
src_ip: event.src_ip,
|
||||
src_port: event.src_port,
|
||||
dst_ip: event.dst_ip,
|
||||
dst_port: event.dst_port,
|
||||
iface_name: event.iface_name,
|
||||
transport: event.transport,
|
||||
qname: event.qname,
|
||||
qtype: event.qtype,
|
||||
rcode: event.rcode,
|
||||
route_class,
|
||||
owner: None,
|
||||
owner_confidence: FlowOwnerConfidence::None,
|
||||
owner_failure: None,
|
||||
}
|
||||
}
|
||||
|
||||
fn is_tunnel_iface(name: &str) -> bool {
|
||||
let name = name.to_ascii_lowercase();
|
||||
name.contains("tun")
|
||||
|| name.contains("tap")
|
||||
|| name.contains("wg")
|
||||
|| name.contains("wireguard")
|
||||
|| name.contains("vpn")
|
||||
|| name.contains("ppp")
|
||||
}
|
||||
116
crates/wtfnet-dnsleak/src/rules.rs
Normal file
116
crates/wtfnet-dnsleak/src/rules.rs
Normal file
@@ -0,0 +1,116 @@
|
||||
use crate::policy::LeakPolicy;
|
||||
use crate::report::{EnrichedEvent, LeakTransport, LeakType, Severity};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct LeakDecision {
|
||||
pub leak_type: LeakType,
|
||||
pub severity: Severity,
|
||||
pub policy_rule_id: String,
|
||||
}
|
||||
|
||||
pub fn evaluate(event: &EnrichedEvent, policy: &LeakPolicy) -> Option<LeakDecision> {
|
||||
match event.transport {
|
||||
LeakTransport::Udp53 | LeakTransport::Tcp53 => {
|
||||
if is_proxy_required(event, policy) && !is_allowed(event, policy) {
|
||||
return Some(LeakDecision {
|
||||
leak_type: LeakType::B,
|
||||
severity: Severity::P1,
|
||||
policy_rule_id: "LEAK_B_PROXY_REQUIRED".to_string(),
|
||||
});
|
||||
}
|
||||
if !is_allowed(event, policy) {
|
||||
return Some(LeakDecision {
|
||||
leak_type: LeakType::A,
|
||||
severity: Severity::P0,
|
||||
policy_rule_id: "LEAK_A_PLAINTEXT".to_string(),
|
||||
});
|
||||
}
|
||||
}
|
||||
LeakTransport::Dot | LeakTransport::Doh => {
|
||||
if !is_allowed(event, policy) {
|
||||
return Some(LeakDecision {
|
||||
leak_type: LeakType::C,
|
||||
severity: Severity::P1,
|
||||
policy_rule_id: "LEAK_C_ENCRYPTED".to_string(),
|
||||
});
|
||||
}
|
||||
}
|
||||
LeakTransport::Unknown => {}
|
||||
}
|
||||
None
|
||||
}
|
||||
|
||||
fn is_allowed(event: &EnrichedEvent, policy: &LeakPolicy) -> bool {
|
||||
let has_rules = !policy.allowed_ifaces.is_empty()
|
||||
|| !policy.allowed_destinations.is_empty()
|
||||
|| !policy.allowed_ports.is_empty()
|
||||
|| !policy.allowed_processes.is_empty();
|
||||
if !has_rules {
|
||||
return false;
|
||||
}
|
||||
|
||||
if let Some(iface) = event.iface_name.as_ref() {
|
||||
if policy
|
||||
.allowed_ifaces
|
||||
.iter()
|
||||
.any(|allowed| allowed.eq_ignore_ascii_case(iface))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if policy
|
||||
.allowed_ports
|
||||
.iter()
|
||||
.any(|port| *port == event.dst_port)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
if policy
|
||||
.allowed_destinations
|
||||
.iter()
|
||||
.any(|net| net.contains(&event.dst_ip))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
if let Some(name) = event
|
||||
.owner
|
||||
.as_ref()
|
||||
.and_then(|owner| owner.process_name.as_ref())
|
||||
{
|
||||
if policy
|
||||
.allowed_processes
|
||||
.iter()
|
||||
.any(|value| value.eq_ignore_ascii_case(name))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
false
|
||||
}
|
||||
|
||||
fn is_proxy_required(event: &EnrichedEvent, policy: &LeakPolicy) -> bool {
|
||||
let Some(qname) = event.qname.as_ref() else {
|
||||
return false;
|
||||
};
|
||||
let qname = qname.to_ascii_lowercase();
|
||||
if policy.proxy_required_domains.iter().any(|domain| {
|
||||
let domain = domain.to_ascii_lowercase();
|
||||
qname == domain || qname.ends_with(&format!(".{domain}"))
|
||||
}) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if !policy.allowlist_domains.is_empty() {
|
||||
let allowed = policy.allowlist_domains.iter().any(|domain| {
|
||||
let domain = domain.to_ascii_lowercase();
|
||||
qname == domain || qname.ends_with(&format!(".{domain}"))
|
||||
});
|
||||
return !allowed;
|
||||
}
|
||||
|
||||
false
|
||||
}
|
||||
380
crates/wtfnet-dnsleak/src/sensor.rs
Normal file
380
crates/wtfnet-dnsleak/src/sensor.rs
Normal file
@@ -0,0 +1,380 @@
|
||||
use crate::classify::{classify_dns_query, ClassifiedEvent};
|
||||
use crate::report::LeakTransport;
|
||||
use crate::DnsLeakError;
|
||||
use std::collections::HashSet;
|
||||
use std::net::IpAddr;
|
||||
use std::time::{Duration, Instant, SystemTime, UNIX_EPOCH};
|
||||
use tracing::debug;
|
||||
use wtfnet_platform::FlowProtocol;
|
||||
|
||||
use crate::LeakWatchOptions;
|
||||
|
||||
#[cfg(feature = "pcap")]
|
||||
use pnet::datalink::{self, Channel, Config as DatalinkConfig};
|
||||
#[cfg(feature = "pcap")]
|
||||
use std::sync::mpsc;
|
||||
|
||||
#[cfg(not(feature = "pcap"))]
|
||||
pub async fn capture_events(_options: &LeakWatchOptions) -> Result<Vec<ClassifiedEvent>, DnsLeakError> {
|
||||
Err(DnsLeakError::NotSupported(
|
||||
"dns leak watch requires pcap feature".to_string(),
|
||||
))
|
||||
}
|
||||
|
||||
#[cfg(feature = "pcap")]
|
||||
pub async fn capture_events(options: &LeakWatchOptions) -> Result<Vec<ClassifiedEvent>, DnsLeakError> {
|
||||
let options = options.clone();
|
||||
let candidates = format_iface_list(&datalink::interfaces());
|
||||
let timeout_ms = options.duration_ms.saturating_add(2000);
|
||||
let handle = tokio::task::spawn_blocking(move || capture_events_blocking(options));
|
||||
match tokio::time::timeout(Duration::from_millis(timeout_ms), handle).await {
|
||||
Ok(joined) => joined.map_err(|err| DnsLeakError::Io(err.to_string()))?,
|
||||
Err(_) => {
|
||||
return Err(DnsLeakError::Io(
|
||||
format!(
|
||||
"capture timed out waiting for interface; candidates: {candidates}"
|
||||
),
|
||||
))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct IfaceDiag {
|
||||
pub name: String,
|
||||
pub open_ok: bool,
|
||||
pub error: String,
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "pcap"))]
|
||||
pub fn iface_diagnostics() -> Result<Vec<IfaceDiag>, DnsLeakError> {
|
||||
Err(DnsLeakError::NotSupported(
|
||||
"dns leak watch requires pcap feature".to_string(),
|
||||
))
|
||||
}
|
||||
|
||||
#[cfg(feature = "pcap")]
|
||||
pub fn iface_diagnostics() -> Result<Vec<IfaceDiag>, DnsLeakError> {
|
||||
let interfaces = datalink::interfaces();
|
||||
let mut config = DatalinkConfig::default();
|
||||
config.read_timeout = Some(Duration::from_millis(500));
|
||||
let mut out = Vec::new();
|
||||
for iface in interfaces {
|
||||
let result = match open_channel_with_timeout(iface.clone(), &config) {
|
||||
Ok((_iface, _rx)) => IfaceDiag {
|
||||
name: iface.name,
|
||||
open_ok: true,
|
||||
error: "-".to_string(),
|
||||
},
|
||||
Err(err) => IfaceDiag {
|
||||
name: iface.name,
|
||||
open_ok: false,
|
||||
error: err,
|
||||
},
|
||||
};
|
||||
out.push(result);
|
||||
}
|
||||
Ok(out)
|
||||
}
|
||||
|
||||
#[cfg(feature = "pcap")]
|
||||
fn capture_events_blocking(options: LeakWatchOptions) -> Result<Vec<ClassifiedEvent>, DnsLeakError> {
|
||||
use pnet::packet::ethernet::{EtherTypes, EthernetPacket};
|
||||
use pnet::packet::Packet;
|
||||
|
||||
let mut config = DatalinkConfig::default();
|
||||
config.read_timeout = Some(Duration::from_millis(500));
|
||||
let (iface, mut rx) = select_interface(options.iface.as_deref(), &config)?;
|
||||
let local_ips = iface.ips.iter().map(|ip| ip.ip()).collect::<Vec<_>>();
|
||||
let iface_name = iface.name.clone();
|
||||
|
||||
let deadline = Instant::now() + Duration::from_millis(options.duration_ms);
|
||||
let mut events = Vec::new();
|
||||
let mut seen = HashSet::new();
|
||||
|
||||
while Instant::now() < deadline {
|
||||
let frame = match rx.next() {
|
||||
Ok(frame) => frame,
|
||||
Err(_) => continue,
|
||||
};
|
||||
let ethernet = match EthernetPacket::new(frame) {
|
||||
Some(packet) => packet,
|
||||
None => continue,
|
||||
};
|
||||
let event = match ethernet.get_ethertype() {
|
||||
EtherTypes::Ipv4 => parse_ipv4(
|
||||
ethernet.payload(),
|
||||
&local_ips,
|
||||
&iface_name,
|
||||
),
|
||||
EtherTypes::Ipv6 => parse_ipv6(
|
||||
ethernet.payload(),
|
||||
&local_ips,
|
||||
&iface_name,
|
||||
),
|
||||
_ => None,
|
||||
};
|
||||
if let Some(event) = event {
|
||||
let key = format!(
|
||||
"{:?}|{}|{}|{}|{}",
|
||||
event.transport, event.src_ip, event.src_port, event.dst_ip, event.dst_port
|
||||
);
|
||||
if seen.insert(key) {
|
||||
debug!(
|
||||
transport = ?event.transport,
|
||||
src_ip = %event.src_ip,
|
||||
src_port = event.src_port,
|
||||
dst_ip = %event.dst_ip,
|
||||
dst_port = event.dst_port,
|
||||
"dns leak event"
|
||||
);
|
||||
events.push(event);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(events)
|
||||
}
|
||||
|
||||
#[cfg(feature = "pcap")]
|
||||
fn parse_ipv4(
|
||||
payload: &[u8],
|
||||
local_ips: &[IpAddr],
|
||||
iface_name: &str,
|
||||
) -> Option<ClassifiedEvent> {
|
||||
use pnet::packet::ip::IpNextHeaderProtocols;
|
||||
use pnet::packet::ipv4::Ipv4Packet;
|
||||
use pnet::packet::Packet;
|
||||
let ipv4 = Ipv4Packet::new(payload)?;
|
||||
let src = IpAddr::V4(ipv4.get_source());
|
||||
if !local_ips.contains(&src) {
|
||||
return None;
|
||||
}
|
||||
match ipv4.get_next_level_protocol() {
|
||||
IpNextHeaderProtocols::Udp => parse_udp(
|
||||
src,
|
||||
IpAddr::V4(ipv4.get_destination()),
|
||||
ipv4.payload(),
|
||||
iface_name,
|
||||
),
|
||||
IpNextHeaderProtocols::Tcp => parse_tcp(
|
||||
src,
|
||||
IpAddr::V4(ipv4.get_destination()),
|
||||
ipv4.payload(),
|
||||
iface_name,
|
||||
),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "pcap")]
|
||||
fn parse_ipv6(
|
||||
payload: &[u8],
|
||||
local_ips: &[IpAddr],
|
||||
iface_name: &str,
|
||||
) -> Option<ClassifiedEvent> {
|
||||
use pnet::packet::ip::IpNextHeaderProtocols;
|
||||
use pnet::packet::ipv6::Ipv6Packet;
|
||||
use pnet::packet::Packet;
|
||||
let ipv6 = Ipv6Packet::new(payload)?;
|
||||
let src = IpAddr::V6(ipv6.get_source());
|
||||
if !local_ips.contains(&src) {
|
||||
return None;
|
||||
}
|
||||
match ipv6.get_next_header() {
|
||||
IpNextHeaderProtocols::Udp => parse_udp(
|
||||
src,
|
||||
IpAddr::V6(ipv6.get_destination()),
|
||||
ipv6.payload(),
|
||||
iface_name,
|
||||
),
|
||||
IpNextHeaderProtocols::Tcp => parse_tcp(
|
||||
src,
|
||||
IpAddr::V6(ipv6.get_destination()),
|
||||
ipv6.payload(),
|
||||
iface_name,
|
||||
),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "pcap")]
|
||||
fn parse_udp(
|
||||
src_ip: IpAddr,
|
||||
dst_ip: IpAddr,
|
||||
payload: &[u8],
|
||||
iface_name: &str,
|
||||
) -> Option<ClassifiedEvent> {
|
||||
use pnet::packet::udp::UdpPacket;
|
||||
use pnet::packet::Packet;
|
||||
let udp = UdpPacket::new(payload)?;
|
||||
let dst_port = udp.get_destination();
|
||||
if dst_port != 53 {
|
||||
return None;
|
||||
}
|
||||
let (qname, qtype, rcode) = classify_dns_query(udp.payload())?;
|
||||
Some(ClassifiedEvent {
|
||||
timestamp_ms: now_ms(),
|
||||
proto: FlowProtocol::Udp,
|
||||
src_ip,
|
||||
src_port: udp.get_source(),
|
||||
dst_ip,
|
||||
dst_port,
|
||||
iface_name: Some(iface_name.to_string()),
|
||||
transport: LeakTransport::Udp53,
|
||||
qname: Some(qname),
|
||||
qtype: Some(qtype),
|
||||
rcode: Some(rcode),
|
||||
})
|
||||
}
|
||||
|
||||
#[cfg(feature = "pcap")]
|
||||
fn parse_tcp(
|
||||
src_ip: IpAddr,
|
||||
dst_ip: IpAddr,
|
||||
payload: &[u8],
|
||||
iface_name: &str,
|
||||
) -> Option<ClassifiedEvent> {
|
||||
use pnet::packet::tcp::TcpPacket;
|
||||
let tcp = TcpPacket::new(payload)?;
|
||||
let dst_port = tcp.get_destination();
|
||||
let transport = match dst_port {
|
||||
53 => LeakTransport::Tcp53,
|
||||
853 => LeakTransport::Dot,
|
||||
_ => return None,
|
||||
};
|
||||
Some(ClassifiedEvent {
|
||||
timestamp_ms: now_ms(),
|
||||
proto: FlowProtocol::Tcp,
|
||||
src_ip,
|
||||
src_port: tcp.get_source(),
|
||||
dst_ip,
|
||||
dst_port,
|
||||
iface_name: Some(iface_name.to_string()),
|
||||
transport,
|
||||
qname: None,
|
||||
qtype: None,
|
||||
rcode: None,
|
||||
})
|
||||
}
|
||||
|
||||
#[cfg(feature = "pcap")]
|
||||
fn select_interface(
|
||||
name: Option<&str>,
|
||||
config: &DatalinkConfig,
|
||||
) -> Result<(datalink::NetworkInterface, Box<dyn datalink::DataLinkReceiver>), DnsLeakError> {
|
||||
let interfaces = datalink::interfaces();
|
||||
if let Some(name) = name {
|
||||
let iface = interfaces
|
||||
.iter()
|
||||
.find(|iface| iface.name == name)
|
||||
.cloned()
|
||||
.ok_or_else(|| {
|
||||
DnsLeakError::Io(format!(
|
||||
"interface '{name}' not found; candidates: {}",
|
||||
format_iface_list(&interfaces)
|
||||
))
|
||||
})?;
|
||||
return open_channel_with_timeout(iface, config).map_err(|err| {
|
||||
DnsLeakError::Io(format!(
|
||||
"failed to open capture on interface ({err}); candidates: {}",
|
||||
format_iface_list(&interfaces)
|
||||
))
|
||||
});
|
||||
}
|
||||
|
||||
if let Some(iface) = pick_stable_iface(&interfaces) {
|
||||
if let Ok(channel) = open_channel_with_timeout(iface, config) {
|
||||
return Ok(channel);
|
||||
}
|
||||
}
|
||||
|
||||
for iface in interfaces.iter() {
|
||||
if let Ok(channel) = open_channel_with_timeout(iface.clone(), config) {
|
||||
return Ok(channel);
|
||||
}
|
||||
}
|
||||
|
||||
Err(DnsLeakError::Io(format!(
|
||||
"no suitable interface found; candidates: {}",
|
||||
format_iface_list(&interfaces)
|
||||
)))
|
||||
}
|
||||
|
||||
#[cfg(feature = "pcap")]
|
||||
fn open_channel_with_timeout(
|
||||
iface: datalink::NetworkInterface,
|
||||
config: &DatalinkConfig,
|
||||
) -> Result<(datalink::NetworkInterface, Box<dyn datalink::DataLinkReceiver>), String> {
|
||||
let (tx, rx) = mpsc::channel();
|
||||
let config = config.clone();
|
||||
std::thread::spawn(move || {
|
||||
let result = match datalink::channel(&iface, config) {
|
||||
Ok(Channel::Ethernet(_, rx)) => Ok(rx),
|
||||
Ok(_) => Err("unsupported channel".to_string()),
|
||||
Err(err) => Err(err.to_string()),
|
||||
};
|
||||
let _ = tx.send((iface, result));
|
||||
});
|
||||
|
||||
let timeout = Duration::from_millis(700);
|
||||
match rx.recv_timeout(timeout) {
|
||||
Ok((iface, Ok(rx))) => Ok((iface, rx)),
|
||||
Ok((_iface, Err(err))) => Err(err),
|
||||
Err(_) => Err("timeout opening capture".to_string()),
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "pcap")]
|
||||
fn is_named_fallback(name: &str) -> bool {
|
||||
let name = name.to_ascii_lowercase();
|
||||
name.contains("wlan")
|
||||
|| name.contains("wifi")
|
||||
|| name.contains("wi-fi")
|
||||
|| name.contains("ethernet")
|
||||
|| name.contains("eth")
|
||||
|| name.contains("lan")
|
||||
}
|
||||
|
||||
#[cfg(feature = "pcap")]
|
||||
fn pick_stable_iface(
|
||||
interfaces: &[datalink::NetworkInterface],
|
||||
) -> Option<datalink::NetworkInterface> {
|
||||
let mut preferred = interfaces
|
||||
.iter()
|
||||
.filter(|iface| {
|
||||
iface.is_up()
|
||||
&& !iface.is_loopback()
|
||||
&& (is_named_fallback(&iface.name) || !iface.ips.is_empty())
|
||||
})
|
||||
.cloned()
|
||||
.collect::<Vec<_>>();
|
||||
if preferred.is_empty() {
|
||||
preferred = interfaces
|
||||
.iter()
|
||||
.filter(|iface| !iface.is_loopback())
|
||||
.cloned()
|
||||
.collect();
|
||||
}
|
||||
preferred.into_iter().next()
|
||||
}
|
||||
|
||||
#[cfg(feature = "pcap")]
|
||||
fn format_iface_list(interfaces: &[datalink::NetworkInterface]) -> String {
|
||||
if interfaces.is_empty() {
|
||||
return "-".to_string();
|
||||
}
|
||||
interfaces
|
||||
.iter()
|
||||
.map(|iface| iface.name.as_str())
|
||||
.collect::<Vec<_>>()
|
||||
.join(", ")
|
||||
}
|
||||
|
||||
#[cfg(feature = "pcap")]
|
||||
fn now_ms() -> u128 {
|
||||
SystemTime::now()
|
||||
.duration_since(UNIX_EPOCH)
|
||||
.unwrap_or_default()
|
||||
.as_millis()
|
||||
}
|
||||
@@ -148,7 +148,11 @@ pub async fn request(url: &str, opts: HttpRequestOptions) -> Result<HttpReport,
|
||||
});
|
||||
}
|
||||
Err(err) => {
|
||||
warnings.push(format!("http3 failed: {err}"));
|
||||
let err_string = err.to_string();
|
||||
let category = classify_http3_error(&err_string);
|
||||
warnings.push(format!(
|
||||
"http3 failed (category={category}): {err_string}"
|
||||
));
|
||||
if opts.http3_only {
|
||||
return Err(err);
|
||||
}
|
||||
@@ -410,6 +414,37 @@ fn build_tls_connector() -> Result<TlsConnector, HttpError> {
|
||||
Ok(TlsConnector::from(Arc::new(config)))
|
||||
}
|
||||
|
||||
#[cfg(feature = "http3")]
|
||||
fn classify_http3_error(message: &str) -> &'static str {
|
||||
let message = message.to_ascii_lowercase();
|
||||
if message.contains("timeout") || message.contains("timed out") {
|
||||
return "timeout";
|
||||
}
|
||||
if message.contains("no resolved ips") || message.contains("no addresses resolved") {
|
||||
return "resolve";
|
||||
}
|
||||
if message.contains("udp") && message.contains("blocked") {
|
||||
return "udp_blocked";
|
||||
}
|
||||
if message.contains("quic") || message.contains("connection refused") {
|
||||
return "connect";
|
||||
}
|
||||
if message.contains("alpn") || message.contains("application protocol") {
|
||||
return "alpn";
|
||||
}
|
||||
if message.contains("tls")
|
||||
|| message.contains("certificate")
|
||||
|| message.contains("crypto")
|
||||
|| message.contains("handshake")
|
||||
{
|
||||
return "tls";
|
||||
}
|
||||
if message.contains("permission denied") || message.contains("access is denied") {
|
||||
return "permission";
|
||||
}
|
||||
"unknown"
|
||||
}
|
||||
|
||||
#[cfg(feature = "http3")]
|
||||
async fn http3_request(
|
||||
url: &str,
|
||||
|
||||
@@ -2,10 +2,12 @@ use async_trait::async_trait;
|
||||
use network_interface::{Addr, NetworkInterface, NetworkInterfaceConfig};
|
||||
use sha2::Digest;
|
||||
use std::collections::HashMap;
|
||||
use std::net::{IpAddr, SocketAddr};
|
||||
use std::sync::Arc;
|
||||
use wtfnet_core::ErrorCode;
|
||||
use wtfnet_platform::{
|
||||
CertProvider, ConnSocket, DnsConfigSnapshot, ListenSocket, NeighborEntry, NeighProvider,
|
||||
CertProvider, ConnSocket, DnsConfigSnapshot, FlowOwner, FlowOwnerConfidence, FlowOwnerProvider,
|
||||
FlowOwnerResult, FlowProtocol, FlowTuple, ListenSocket, NeighborEntry, NeighProvider,
|
||||
NetInterface, Platform, PlatformError, PortsProvider, RootCert, RouteEntry, SysProvider,
|
||||
};
|
||||
use x509_parser::oid_registry::{
|
||||
@@ -19,6 +21,7 @@ pub fn platform() -> Platform {
|
||||
ports: Arc::new(LinuxPortsProvider),
|
||||
cert: Arc::new(LinuxCertProvider),
|
||||
neigh: Arc::new(LinuxNeighProvider),
|
||||
flow_owner: Arc::new(LinuxFlowOwnerProvider),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -26,6 +29,7 @@ struct LinuxSysProvider;
|
||||
struct LinuxPortsProvider;
|
||||
struct LinuxCertProvider;
|
||||
struct LinuxNeighProvider;
|
||||
struct LinuxFlowOwnerProvider;
|
||||
|
||||
#[async_trait]
|
||||
impl SysProvider for LinuxSysProvider {
|
||||
@@ -375,6 +379,20 @@ fn parse_proc_socket_addr(value: &str, is_v6: bool) -> Option<String> {
|
||||
}
|
||||
}
|
||||
|
||||
fn parse_proc_socket_addr_value(value: &str, is_v6: bool) -> Option<SocketAddr> {
|
||||
let mut parts = value.split(':');
|
||||
let addr_hex = parts.next()?;
|
||||
let port_hex = parts.next()?;
|
||||
let port = u16::from_str_radix(port_hex, 16).ok()?;
|
||||
if is_v6 {
|
||||
let addr = parse_ipv6_hex(addr_hex)?;
|
||||
Some(SocketAddr::new(IpAddr::V6(addr), port))
|
||||
} else {
|
||||
let addr = parse_ipv4_hex(addr_hex)?;
|
||||
Some(SocketAddr::new(IpAddr::V4(addr), port))
|
||||
}
|
||||
}
|
||||
|
||||
fn parse_linux_arp(contents: &str) -> Vec<NeighborEntry> {
|
||||
let mut neighbors = Vec::new();
|
||||
for (idx, line) in contents.lines().enumerate() {
|
||||
@@ -482,6 +500,138 @@ fn read_ppid(pid: u32) -> Option<u32> {
|
||||
Some(ppid)
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct ProcSocketEntry {
|
||||
local: SocketAddr,
|
||||
remote: SocketAddr,
|
||||
inode: String,
|
||||
}
|
||||
|
||||
fn parse_proc_socket_entries(
|
||||
path: &str,
|
||||
is_v6: bool,
|
||||
) -> Result<Vec<ProcSocketEntry>, PlatformError> {
|
||||
let contents = std::fs::read_to_string(path)
|
||||
.map_err(|err| PlatformError::new(ErrorCode::IoError, err.to_string()))?;
|
||||
let mut entries = Vec::new();
|
||||
for (idx, line) in contents.lines().enumerate() {
|
||||
if idx == 0 {
|
||||
continue;
|
||||
}
|
||||
let parts: Vec<&str> = line.split_whitespace().collect();
|
||||
if parts.len() < 10 {
|
||||
continue;
|
||||
}
|
||||
let local = parts[1];
|
||||
let remote = parts[2];
|
||||
let inode = match parts.get(9) {
|
||||
Some(value) => (*value).to_string(),
|
||||
None => continue,
|
||||
};
|
||||
let local_addr = match parse_proc_socket_addr_value(local, is_v6) {
|
||||
Some(addr) => addr,
|
||||
None => continue,
|
||||
};
|
||||
let remote_addr = match parse_proc_socket_addr_value(remote, is_v6) {
|
||||
Some(addr) => addr,
|
||||
None => continue,
|
||||
};
|
||||
entries.push(ProcSocketEntry {
|
||||
local: local_addr,
|
||||
remote: remote_addr,
|
||||
inode,
|
||||
});
|
||||
}
|
||||
Ok(entries)
|
||||
}
|
||||
|
||||
fn match_flow_entry<'a>(
|
||||
flow: &FlowTuple,
|
||||
entries: &'a [ProcSocketEntry],
|
||||
match_remote: bool,
|
||||
) -> Option<(&'a ProcSocketEntry, FlowOwnerConfidence)> {
|
||||
for entry in entries {
|
||||
let local_match = entry.local.port() == flow.src_port
|
||||
&& (entry.local.ip() == flow.src_ip
|
||||
|| entry.local.ip().is_unspecified()
|
||||
|| entry.local.ip().is_loopback() && flow.src_ip.is_loopback());
|
||||
if !local_match {
|
||||
continue;
|
||||
}
|
||||
if match_remote {
|
||||
let remote_match = entry.remote.port() == flow.dst_port
|
||||
&& (entry.remote.ip() == flow.dst_ip
|
||||
|| entry.remote.ip().is_unspecified());
|
||||
if remote_match {
|
||||
return Some((entry, FlowOwnerConfidence::High));
|
||||
}
|
||||
} else {
|
||||
return Some((entry, FlowOwnerConfidence::Medium));
|
||||
}
|
||||
}
|
||||
None
|
||||
}
|
||||
|
||||
fn resolve_flow_owner(
|
||||
flow: &FlowTuple,
|
||||
) -> Result<FlowOwnerResult, PlatformError> {
|
||||
let inode_map = build_inode_map();
|
||||
let entries = match flow.proto {
|
||||
FlowProtocol::Tcp => {
|
||||
let mut out = parse_proc_socket_entries("/proc/net/tcp", false)?;
|
||||
out.extend(parse_proc_socket_entries("/proc/net/tcp6", true)?);
|
||||
out
|
||||
}
|
||||
FlowProtocol::Udp => {
|
||||
let mut out = parse_proc_socket_entries("/proc/net/udp", false)?;
|
||||
out.extend(parse_proc_socket_entries("/proc/net/udp6", true)?);
|
||||
out
|
||||
}
|
||||
};
|
||||
|
||||
let match_remote = matches!(flow.proto, FlowProtocol::Tcp);
|
||||
let matched = match_flow_entry(flow, &entries, match_remote)
|
||||
.or_else(|| {
|
||||
if matches!(flow.proto, FlowProtocol::Udp) {
|
||||
match_flow_entry(flow, &entries, false)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
});
|
||||
|
||||
let (entry, confidence) = match matched {
|
||||
Some(value) => value,
|
||||
None => {
|
||||
return Ok(FlowOwnerResult {
|
||||
owner: None,
|
||||
confidence: FlowOwnerConfidence::None,
|
||||
failure_reason: Some("no socket match".to_string()),
|
||||
})
|
||||
}
|
||||
};
|
||||
|
||||
let owner = inode_map.get(&entry.inode).map(|info| FlowOwner {
|
||||
pid: Some(info.pid),
|
||||
ppid: info.ppid,
|
||||
process_name: info.name.clone(),
|
||||
process_path: info.path.clone(),
|
||||
});
|
||||
|
||||
if owner.is_none() {
|
||||
return Ok(FlowOwnerResult {
|
||||
owner: None,
|
||||
confidence: FlowOwnerConfidence::Low,
|
||||
failure_reason: Some("socket owner not found".to_string()),
|
||||
});
|
||||
}
|
||||
|
||||
Ok(FlowOwnerResult {
|
||||
owner,
|
||||
confidence,
|
||||
failure_reason: None,
|
||||
})
|
||||
}
|
||||
|
||||
fn load_native_roots(store: &str) -> Result<Vec<RootCert>, PlatformError> {
|
||||
let certs = rustls_native_certs::load_native_certs()
|
||||
.map_err(|err| PlatformError::new(ErrorCode::IoError, err.to_string()))?;
|
||||
@@ -626,3 +776,10 @@ impl NeighProvider for LinuxNeighProvider {
|
||||
Ok(parse_linux_arp(&contents))
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl FlowOwnerProvider for LinuxFlowOwnerProvider {
|
||||
async fn owner_of(&self, flow: FlowTuple) -> Result<FlowOwnerResult, PlatformError> {
|
||||
resolve_flow_owner(&flow)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2,6 +2,7 @@ use async_trait::async_trait;
|
||||
use network_interface::{Addr, NetworkInterface, NetworkInterfaceConfig};
|
||||
use regex::Regex;
|
||||
use std::collections::HashMap;
|
||||
use std::net::{IpAddr, SocketAddr};
|
||||
use sha2::Digest;
|
||||
use x509_parser::oid_registry::{
|
||||
OID_KEY_TYPE_DSA, OID_KEY_TYPE_EC_PUBLIC_KEY, OID_KEY_TYPE_GOST_R3410_2012_256,
|
||||
@@ -10,7 +11,8 @@ use x509_parser::oid_registry::{
|
||||
use std::sync::Arc;
|
||||
use wtfnet_core::ErrorCode;
|
||||
use wtfnet_platform::{
|
||||
CertProvider, ConnSocket, DnsConfigSnapshot, ListenSocket, NeighborEntry, NeighProvider,
|
||||
CertProvider, ConnSocket, DnsConfigSnapshot, FlowOwner, FlowOwnerConfidence, FlowOwnerProvider,
|
||||
FlowOwnerResult, FlowProtocol, FlowTuple, ListenSocket, NeighborEntry, NeighProvider,
|
||||
NetInterface, Platform, PlatformError, PortsProvider, RootCert, RouteEntry, SysProvider,
|
||||
};
|
||||
|
||||
@@ -20,6 +22,7 @@ pub fn platform() -> Platform {
|
||||
ports: Arc::new(WindowsPortsProvider),
|
||||
cert: Arc::new(WindowsCertProvider),
|
||||
neigh: Arc::new(WindowsNeighProvider),
|
||||
flow_owner: Arc::new(WindowsFlowOwnerProvider),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -27,6 +30,7 @@ struct WindowsSysProvider;
|
||||
struct WindowsPortsProvider;
|
||||
struct WindowsCertProvider;
|
||||
struct WindowsNeighProvider;
|
||||
struct WindowsFlowOwnerProvider;
|
||||
|
||||
#[async_trait]
|
||||
impl SysProvider for WindowsSysProvider {
|
||||
@@ -579,6 +583,155 @@ fn parse_csv_line(line: &str) -> Vec<String> {
|
||||
out
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct FlowEntry {
|
||||
proto: FlowProtocol,
|
||||
local: SocketAddr,
|
||||
remote: Option<SocketAddr>,
|
||||
pid: u32,
|
||||
}
|
||||
|
||||
fn parse_netstat_flow_entries() -> Result<Vec<FlowEntry>, PlatformError> {
|
||||
let output = std::process::Command::new("netstat")
|
||||
.arg("-ano")
|
||||
.output()
|
||||
.map_err(|err| PlatformError::new(ErrorCode::IoError, err.to_string()))?;
|
||||
if !output.status.success() {
|
||||
return Err(PlatformError::new(ErrorCode::IoError, "netstat -ano failed"));
|
||||
}
|
||||
|
||||
let text = String::from_utf8_lossy(&output.stdout);
|
||||
let mut entries = Vec::new();
|
||||
|
||||
for line in text.lines() {
|
||||
let trimmed = line.trim();
|
||||
if trimmed.starts_with("TCP") {
|
||||
let parts: Vec<&str> = trimmed.split_whitespace().collect();
|
||||
if parts.len() < 5 {
|
||||
continue;
|
||||
}
|
||||
let state = parts[3];
|
||||
if state == "LISTENING" {
|
||||
continue;
|
||||
}
|
||||
let local = match parse_netstat_addr(parts[1]) {
|
||||
Some(addr) => addr,
|
||||
None => continue,
|
||||
};
|
||||
let remote = match parse_netstat_addr(parts[2]) {
|
||||
Some(addr) => addr,
|
||||
None => continue,
|
||||
};
|
||||
let pid = match parts[4].parse::<u32>() {
|
||||
Ok(pid) => pid,
|
||||
Err(_) => continue,
|
||||
};
|
||||
entries.push(FlowEntry {
|
||||
proto: FlowProtocol::Tcp,
|
||||
local,
|
||||
remote: Some(remote),
|
||||
pid,
|
||||
});
|
||||
} else if trimmed.starts_with("UDP") {
|
||||
let parts: Vec<&str> = trimmed.split_whitespace().collect();
|
||||
if parts.len() < 4 {
|
||||
continue;
|
||||
}
|
||||
let local = match parse_netstat_addr(parts[1]) {
|
||||
Some(addr) => addr,
|
||||
None => continue,
|
||||
};
|
||||
let pid = match parts[3].parse::<u32>() {
|
||||
Ok(pid) => pid,
|
||||
Err(_) => continue,
|
||||
};
|
||||
entries.push(FlowEntry {
|
||||
proto: FlowProtocol::Udp,
|
||||
local,
|
||||
remote: None,
|
||||
pid,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
Ok(entries)
|
||||
}
|
||||
|
||||
fn parse_netstat_addr(value: &str) -> Option<SocketAddr> {
|
||||
let value = value.trim();
|
||||
if value == "*:*" {
|
||||
return None;
|
||||
}
|
||||
if let Some(rest) = value.strip_prefix('[') {
|
||||
let end = rest.find(']')?;
|
||||
let host = &rest[..end];
|
||||
let port = rest[end + 2..].parse::<u16>().ok()?;
|
||||
let host = host.split('%').next().unwrap_or(host);
|
||||
let ip: IpAddr = host.parse().ok()?;
|
||||
return Some(SocketAddr::new(ip, port));
|
||||
}
|
||||
let pos = value.rfind(':')?;
|
||||
let host = &value[..pos];
|
||||
let port = value[pos + 1..].parse::<u16>().ok()?;
|
||||
let ip: IpAddr = host.parse().ok()?;
|
||||
Some(SocketAddr::new(ip, port))
|
||||
}
|
||||
|
||||
fn resolve_flow_owner(flow: &FlowTuple) -> Result<FlowOwnerResult, PlatformError> {
|
||||
let entries = parse_netstat_flow_entries()?;
|
||||
let proc_map = load_windows_process_map();
|
||||
|
||||
let mut matched: Option<(u32, FlowOwnerConfidence)> = None;
|
||||
for entry in entries {
|
||||
if entry.proto != flow.proto {
|
||||
continue;
|
||||
}
|
||||
let local_match = entry.local.ip() == flow.src_ip && entry.local.port() == flow.src_port;
|
||||
if !local_match {
|
||||
continue;
|
||||
}
|
||||
match flow.proto {
|
||||
FlowProtocol::Tcp => {
|
||||
if let Some(remote) = entry.remote {
|
||||
if remote.ip() == flow.dst_ip && remote.port() == flow.dst_port {
|
||||
matched = Some((entry.pid, FlowOwnerConfidence::High));
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
FlowProtocol::Udp => {
|
||||
matched = Some((entry.pid, FlowOwnerConfidence::Medium));
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let (pid, confidence) = match matched {
|
||||
Some(value) => value,
|
||||
None => {
|
||||
return Ok(FlowOwnerResult {
|
||||
owner: None,
|
||||
confidence: FlowOwnerConfidence::None,
|
||||
failure_reason: Some("no socket match".to_string()),
|
||||
})
|
||||
}
|
||||
};
|
||||
|
||||
let info = proc_map.get(&pid);
|
||||
let owner = Some(FlowOwner {
|
||||
pid: Some(pid),
|
||||
ppid: None,
|
||||
process_name: info.and_then(|value| value.name.clone()),
|
||||
process_path: info.and_then(|value| value.path.clone()),
|
||||
});
|
||||
|
||||
Ok(FlowOwnerResult {
|
||||
owner,
|
||||
confidence,
|
||||
failure_reason: None,
|
||||
})
|
||||
}
|
||||
|
||||
fn load_native_roots(store: &str) -> Result<Vec<RootCert>, PlatformError> {
|
||||
let certs = rustls_native_certs::load_native_certs()
|
||||
.map_err(|err| PlatformError::new(ErrorCode::IoError, err.to_string()))?;
|
||||
@@ -696,3 +849,10 @@ impl NeighProvider for WindowsNeighProvider {
|
||||
Ok(parse_arp_output(&text))
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl FlowOwnerProvider for WindowsFlowOwnerProvider {
|
||||
async fn owner_of(&self, flow: FlowTuple) -> Result<FlowOwnerResult, PlatformError> {
|
||||
resolve_flow_owner(&flow)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
use async_trait::async_trait;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::net::IpAddr;
|
||||
use std::sync::Arc;
|
||||
use wtfnet_core::ErrorCode;
|
||||
|
||||
@@ -80,6 +81,46 @@ pub struct NeighborEntry {
|
||||
pub state: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Serialize, Deserialize, PartialEq, Eq)]
|
||||
#[serde(rename_all = "lowercase")]
|
||||
pub enum FlowProtocol {
|
||||
Udp,
|
||||
Tcp,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
|
||||
#[serde(rename_all = "lowercase")]
|
||||
pub enum FlowOwnerConfidence {
|
||||
High,
|
||||
Medium,
|
||||
Low,
|
||||
None,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct FlowOwner {
|
||||
pub pid: Option<u32>,
|
||||
pub ppid: Option<u32>,
|
||||
pub process_name: Option<String>,
|
||||
pub process_path: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct FlowOwnerResult {
|
||||
pub owner: Option<FlowOwner>,
|
||||
pub confidence: FlowOwnerConfidence,
|
||||
pub failure_reason: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct FlowTuple {
|
||||
pub proto: FlowProtocol,
|
||||
pub src_ip: IpAddr,
|
||||
pub src_port: u16,
|
||||
pub dst_ip: IpAddr,
|
||||
pub dst_port: u16,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct PlatformError {
|
||||
pub code: ErrorCode,
|
||||
@@ -123,9 +164,15 @@ pub trait NeighProvider: Send + Sync {
|
||||
async fn neighbors(&self) -> Result<Vec<NeighborEntry>, PlatformError>;
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
pub trait FlowOwnerProvider: Send + Sync {
|
||||
async fn owner_of(&self, flow: FlowTuple) -> Result<FlowOwnerResult, PlatformError>;
|
||||
}
|
||||
|
||||
pub struct Platform {
|
||||
pub sys: Arc<dyn SysProvider>,
|
||||
pub ports: Arc<dyn PortsProvider>,
|
||||
pub cert: Arc<dyn CertProvider>,
|
||||
pub neigh: Arc<dyn NeighProvider>,
|
||||
pub flow_owner: Arc<dyn FlowOwnerProvider>,
|
||||
}
|
||||
|
||||
69
docs/COMMANDS.md
Normal file
69
docs/COMMANDS.md
Normal file
@@ -0,0 +1,69 @@
|
||||
# WTFnet Commands
|
||||
|
||||
This document lists CLI commands and supported flags. Output defaults to text; use `--json` for structured output.
|
||||
|
||||
## Global flags
|
||||
- `--json` / `--pretty`
|
||||
- `--no-color` / `--quiet`
|
||||
- `-v` / `-vv` / `--verbose`
|
||||
- `--log-level <error|warn|info|debug|trace>`
|
||||
- `--log-format <text|json>`
|
||||
- `--log-file <path>`
|
||||
- `NETTOOL_LOG_FILTER` or `RUST_LOG` can override log filters (ex: `maxminddb::decoder=debug`)
|
||||
|
||||
## sys
|
||||
- `sys ifaces`
|
||||
- `sys ip` flags: `--all`, `--iface <name>`
|
||||
- `sys route` flags: `--ipv4`, `--ipv6`, `--to <ip>`
|
||||
- `sys dns`
|
||||
|
||||
## ports
|
||||
- `ports listen` flags: `--tcp`, `--udp`, `--port <n>`
|
||||
- `ports who <port>`
|
||||
- `ports conns` flags: `--top <n>`, `--by-process`
|
||||
|
||||
## neigh
|
||||
- `neigh list` flags: `--ipv4`, `--ipv6`, `--iface <name>`
|
||||
|
||||
## cert
|
||||
- `cert roots`
|
||||
- `cert baseline <path>`
|
||||
- `cert diff <path>`
|
||||
|
||||
## geoip
|
||||
- `geoip lookup <ip>`
|
||||
- `geoip status`
|
||||
|
||||
## probe
|
||||
- `probe ping <host>` flags: `--count <n>`, `--timeout-ms <n>`, `--interval-ms <n>`, `--no-geoip`
|
||||
- `probe tcping <host:port>` flags: `--count <n>`, `--timeout-ms <n>`, `--socks5 <url>`, `--prefer-ipv4`, `--no-geoip`
|
||||
- `probe trace <host>` flags: `--max-hops <n>`, `--per-hop <n>`, `--timeout-ms <n>`, `--udp`, `--port <n>`, `--rdns`, `--no-geoip`
|
||||
|
||||
## dns
|
||||
- `dns query <domain> <type>` flags: `--server <ip[:port]>`, `--transport <udp|tcp|dot|doh>`, `--tls-name <name>`, `--socks5 <url>`, `--prefer-ipv4`, `--timeout-ms <n>`
|
||||
- `dns detect <domain>` flags: `--servers <csv>`, `--transport <udp|tcp|dot|doh>`, `--tls-name <name>`, `--socks5 <url>`, `--prefer-ipv4`, `--repeat <n>`, `--timeout-ms <n>`
|
||||
- `dns watch` flags: `--duration <Ns|Nms>`, `--iface <name>`, `--filter <pattern>`
|
||||
- `dns leak status` flags: `--profile <full-tunnel|proxy-stub|split>`, `--policy <path>`
|
||||
- `dns leak watch` flags: `--duration <Ns|Nms>`, `--iface <name>`, `--profile <full-tunnel|proxy-stub|split>`, `--policy <path>`, `--privacy <full|redacted|minimal>`, `--out <path>`, `--summary-only`, `--iface-diag`
|
||||
- `dns leak report` flags: `<path>`, `--privacy <full|redacted|minimal>`
|
||||
|
||||
## http
|
||||
- `http head|get <url>` flags: `--timeout-ms <n>`, `--follow-redirects <n>`, `--show-headers`, `--show-body`, `--max-body-bytes <n>`, `--http1-only`, `--http2-only`, `--http3` (feature `http3`), `--http3-only` (feature `http3`), `--geoip`, `--socks5 <url>`
|
||||
|
||||
## tls
|
||||
- `tls handshake|cert|verify|alpn <host:port>` flags: `--sni <name>`, `--alpn <csv>`, `--timeout-ms <n>`, `--insecure`, `--socks5 <url>`, `--prefer-ipv4`, `--show-extensions`, `--ocsp`
|
||||
|
||||
## discover
|
||||
- `discover mdns` flags: `--duration <Ns|Nms>`, `--service <type>`
|
||||
- `discover ssdp` flags: `--duration <Ns|Nms>`
|
||||
- `discover llmnr` flags: `--duration <Ns|Nms>`, `--name <host>`
|
||||
- `discover nbns` flags: `--duration <Ns|Nms>`
|
||||
|
||||
## diag
|
||||
- `diag` flags: `--out <path>`, `--bundle <path>`, `--dns-detect <domain>`, `--dns-timeout-ms <n>`, `--dns-repeat <n>`
|
||||
|
||||
## calc
|
||||
- `calc subnet <cidr>|<ip> <mask>`
|
||||
- `calc contains <a> <b>`
|
||||
- `calc overlap <a> <b>`
|
||||
- `calc summarize <cidr...>`
|
||||
176
docs/DNS_LEAK_DETECTOR_IMPLEMENTATION.md
Normal file
176
docs/DNS_LEAK_DETECTOR_IMPLEMENTATION.md
Normal file
@@ -0,0 +1,176 @@
|
||||
# DNS Leak Detector - Implementation Guide (v0.4)
|
||||
|
||||
This document explains how to implement the DNS leak detector as a new subcrate in WTFnet.
|
||||
|
||||
## 1) New crate: `wtfnet-dnsleak`
|
||||
|
||||
### 1.1 Module layout
|
||||
|
||||
crates/wtfnet-dnsleak/src/
|
||||
- lib.rs
|
||||
- policy.rs # safe path constraints + presets
|
||||
- sensor.rs # passive capture -> normalized TrafficEvent stream
|
||||
- classify.rs # transport classification + confidence
|
||||
- route.rs # interface/route classification (tunnel/physical/loopback)
|
||||
- rules.rs # Leak-A/B/C/D evaluation
|
||||
- report.rs # LeakEvent + SummaryReport builders
|
||||
- privacy.rs # full/redacted/minimal redaction logic
|
||||
|
||||
## 2) Core data types
|
||||
|
||||
### 2.1 TrafficEvent (raw from sensor)
|
||||
Fields:
|
||||
- ts: timestamp
|
||||
- proto: udp/tcp
|
||||
- src_ip, src_port
|
||||
- dst_ip, dst_port
|
||||
- iface_name (capture interface if known)
|
||||
- payload: optional bytes (only for plaintext DNS parsing)
|
||||
|
||||
### 2.2 ClassifiedEvent
|
||||
Adds:
|
||||
- transport: udp53/tcp53/dot/doh/unknown
|
||||
- doh_confidence: HIGH/MEDIUM/LOW (only if doh)
|
||||
- qname/qtype: nullable
|
||||
|
||||
### 2.3 EnrichedEvent
|
||||
Adds:
|
||||
- route_class: loopback/tunnel/physical/unknown
|
||||
- process info: pid/ppid/name (nullable)
|
||||
- attribution_confidence: HIGH/MEDIUM/LOW/NONE
|
||||
- attrib_failure_reason: optional string
|
||||
|
||||
### 2.4 LeakEvent (final output)
|
||||
Adds:
|
||||
- leak_type: A/B/C/D
|
||||
- severity: P0..P3
|
||||
- policy_rule_id
|
||||
- evidence: minimal structured evidence
|
||||
|
||||
## 3) Platform integration: Process Attribution Engine (PAE)
|
||||
|
||||
### 3.1 Trait addition (wtfnet-platform)
|
||||
|
||||
Add:
|
||||
trait FlowOwnerProvider {
|
||||
fn owner_of(
|
||||
&self,
|
||||
proto: Proto,
|
||||
src_ip: IpAddr,
|
||||
src_port: u16,
|
||||
dst_ip: IpAddr,
|
||||
dst_port: u16,
|
||||
) -> FlowOwnerResult;
|
||||
}
|
||||
|
||||
FlowOwnerResult:
|
||||
- pid, ppid, process_name (optional)
|
||||
- confidence: HIGH/MEDIUM/LOW/NONE
|
||||
- failure_reason: optional string
|
||||
|
||||
Design rule: attribution is best-effort and never blocks leak detection.
|
||||
|
||||
## 4) Transport classification logic
|
||||
|
||||
### 4.1 Plain DNS
|
||||
Match:
|
||||
- UDP dst port 53 OR TCP dst port 53
|
||||
Parse QNAME/QTYPE from payload.
|
||||
|
||||
### 4.2 DoT
|
||||
Match:
|
||||
- TCP dst port 853
|
||||
|
||||
### 4.3 DoH (heuristic)
|
||||
Match candidates:
|
||||
- TCP dst port 443 AND (one of):
|
||||
- dst IP in configured DoH resolver list
|
||||
- dst SNI matches known DoH provider list (if available)
|
||||
- frequent small HTTPS bursts pattern (weak)
|
||||
|
||||
Attach confidence:
|
||||
- MEDIUM: known endpoint match
|
||||
- LOW: traffic-shape heuristic only
|
||||
|
||||
## 5) Policy model
|
||||
|
||||
Policy defines "safe DNS path" constraints:
|
||||
- allowed interfaces
|
||||
- allowed destinations (IP/CIDR)
|
||||
- allowed processes
|
||||
- allowed ports
|
||||
|
||||
A DNS event is a leak if it violates safe-path constraints.
|
||||
|
||||
### 5.1 Built-in profiles
|
||||
|
||||
full-tunnel:
|
||||
- allow DNS only via tunnel iface or loopback stub
|
||||
- any UDP/TCP 53 on physical iface => Leak-A
|
||||
|
||||
proxy-stub (default):
|
||||
- allow DNS only to loopback stub
|
||||
- allow stub upstream only to proxy destinations
|
||||
- flag direct DoH/DoT outside proxy path => Leak-C
|
||||
|
||||
split:
|
||||
- allow plaintext DNS only for allowlist
|
||||
- enforce unknown => proxy resolve (Leak-B)
|
||||
|
||||
## 6) Leak rules (A/B/C/D)
|
||||
|
||||
Leak-A (plaintext escape):
|
||||
- transport udp53/tcp53
|
||||
- route_class != allowed
|
||||
- dst not in allowed destination set
|
||||
|
||||
Leak-B (split policy intent leak):
|
||||
- qname matches proxy-required set or "unknown"
|
||||
- query observed going to ISP/domicile resolver or non-tunnel iface
|
||||
|
||||
Leak-C (encrypted bypass):
|
||||
- DoT or DoH flow exists
|
||||
- not via approved egress path (iface/destination)
|
||||
|
||||
Leak-D (mismatch indicator):
|
||||
- correlate qname to later TCP/TLS flows (optional v0.4 NICE)
|
||||
|
||||
## 7) Privacy modes
|
||||
|
||||
Because domains and cmdlines are sensitive, support:
|
||||
- Full: store full qname and cmdline
|
||||
- Redacted (default): hash qname or keep eTLD+1 only; truncate cmdline
|
||||
- Minimal: no domains/cmdline; keep leak counts + resolver IPs + process name
|
||||
|
||||
Privacy mode applies in report builder, not in sensor.
|
||||
|
||||
## 8) CLI integration
|
||||
|
||||
Add under `dns` command group:
|
||||
|
||||
- `dns leak status`
|
||||
- `dns leak watch`
|
||||
- `dns leak report`
|
||||
|
||||
`watch` returns:
|
||||
- summary report (human) by default
|
||||
- `--json` returns structured report with events list
|
||||
|
||||
## 9) Recommended incremental build plan
|
||||
|
||||
Phase 1 (core passive detection):
|
||||
- sensor: udp/tcp capture
|
||||
- classify: udp53/tcp53/dot
|
||||
- parse plaintext qname/qtype
|
||||
- policy: allowlist + allowed interfaces/dests
|
||||
- leak rules: Leak-A + Leak-C (DoT)
|
||||
- report: events + summary
|
||||
|
||||
Phase 2 (process attribution + DoH heuristics):
|
||||
- platform FlowOwnerProvider impls
|
||||
- DoH heuristic classification + confidence
|
||||
- privacy modes
|
||||
|
||||
Phase 3 (optional correlation / Leak-D):
|
||||
- flow tracker correlating DNS -> TCP/TLS connect events
|
||||
- mismatch indicator output
|
||||
154
docs/RELEASE_v0.4.0.md
Normal file
154
docs/RELEASE_v0.4.0.md
Normal file
@@ -0,0 +1,154 @@
|
||||
# WTFnet v0.4.0 - DNS Leak Detection
|
||||
|
||||
v0.4.0 introduces a client-side DNS leak detector aimed at censorship-resistance threat models:
|
||||
detect when DNS behavior escapes the intended safe path. The detector focuses on evidence:
|
||||
transport, interface, destination, and (best-effort) process attribution.
|
||||
|
||||
This release does NOT include HTTP/3 or OS-native TLS verification.
|
||||
|
||||
## 0) Summary
|
||||
|
||||
New major capability: `dns leak` command group.
|
||||
|
||||
Core idea:
|
||||
Passive monitor captures outbound DNS-like traffic -> classify (Plain DNS / DoT / DoH) ->
|
||||
enrich with interface/route/process metadata -> evaluate leak definitions (A/B/C/D) ->
|
||||
emit events + summary report.
|
||||
|
||||
Leak definitions are explicit:
|
||||
- Leak-A: plaintext DNS outside safe path
|
||||
- Leak-B: split-policy intent leak (proxy-required domains resolved via ISP/local path)
|
||||
- Leak-C: encrypted DNS escape/bypass (DoH/DoT outside approved egress)
|
||||
- Leak-D: mismatch risk indicator (DNS egress differs from TCP/TLS egress)
|
||||
|
||||
## 1) Goals
|
||||
|
||||
### G1. Detect DNS leaks without needing special test domains
|
||||
Passive detection must work continuously and produce evidence.
|
||||
|
||||
### G2. Support censorship-resistance leak definitions
|
||||
Include both classic VPN-bypass leaks and split-policy intent leaks.
|
||||
|
||||
### G3. Best-effort process attribution
|
||||
Attach PID/PPID/process name when OS allows; degrade gracefully with confidence.
|
||||
|
||||
### G4. Privacy-aware by default
|
||||
Support privacy modes: Full / Redacted / Minimal.
|
||||
|
||||
## 2) Non-goals (v0.4.0)
|
||||
|
||||
- No "doctor" / smart one-shot diagnosis command
|
||||
- No shell completions / man pages
|
||||
- No HTTP/3 support
|
||||
- No OS-native TLS verifier integration
|
||||
- No firewall modification / kill switch management (detection only)
|
||||
|
||||
## 3) New crates / architecture changes
|
||||
|
||||
### 3.1 New subcrate: `wtfnet-dnsleak`
|
||||
Responsibilities:
|
||||
- passive sensor (pcap/pnet feature-gated)
|
||||
- DNS parser (plaintext only)
|
||||
- transport classifier: udp53/tcp53/dot/doh (confidence)
|
||||
- flow tracker + metadata enrichment
|
||||
- process attribution integration
|
||||
- leak rules engine (A/B/C/D)
|
||||
- structured event + summary report builder
|
||||
|
||||
### 3.2 `wtfnet-platform` extension: flow ownership lookup
|
||||
Add a new trait:
|
||||
- FlowOwnerProvider: map observed traffic 5-tuple -> process info (best-effort)
|
||||
|
||||
Return process attribution confidence:
|
||||
HIGH/MEDIUM/LOW/NONE plus failure reason.
|
||||
|
||||
## 4) CLI scope
|
||||
|
||||
### 4.1 Commands
|
||||
New command group:
|
||||
|
||||
#### `wtfn dns leak watch`
|
||||
Start passive monitoring for a bounded duration (default 10s):
|
||||
- classify transports (udp53/tcp53/dot/doh)
|
||||
- apply leak rules and emit events + summary
|
||||
|
||||
#### `wtfn dns leak status`
|
||||
Print baseline snapshot:
|
||||
- interfaces + routes
|
||||
- system DNS configuration
|
||||
- active policy summary
|
||||
|
||||
#### `wtfn dns leak report`
|
||||
Parse a saved events file and produce a human summary.
|
||||
|
||||
### 4.2 Flags (proposed)
|
||||
Common:
|
||||
- `--duration <Ns|Nms>` (default 10s)
|
||||
- `--iface <name>` (optional capture interface)
|
||||
- `--policy <path>` (JSON policy file)
|
||||
- `--profile <full-tunnel|proxy-stub|split>` (built-in presets)
|
||||
- `--privacy <full|redacted|minimal>` (default redacted)
|
||||
- `--out <path>` (write JSON report/events)
|
||||
|
||||
## 5) Policy model (v0.4.0)
|
||||
|
||||
Safe DNS path constraints can be defined by:
|
||||
- allowed interfaces: loopback/tunnel
|
||||
- allowed destination set: proxy IPs, internal resolvers
|
||||
- allowed processes: only local stub/proxy can resolve upstream
|
||||
- allowed ports: e.g. only 443 to proxy server
|
||||
|
||||
A DNS event is a leak if it violates safe-path constraints.
|
||||
|
||||
Built-in profiles:
|
||||
1) full-tunnel VPN style
|
||||
2) proxy + local stub (default, censorship model)
|
||||
3) split policy
|
||||
|
||||
## 6) Outputs
|
||||
|
||||
### 6.1 Leak events (structured)
|
||||
Each LeakEvent includes:
|
||||
- timestamp
|
||||
- transport: udp53/tcp53/dot/doh/unknown
|
||||
- qname/qtype (nullable)
|
||||
- interface + route_class
|
||||
- dst ip:port
|
||||
- process info (nullable) + attribution confidence
|
||||
- leak_type: A/B/C/D
|
||||
- severity: P0..P3
|
||||
- evidence fields + optional geoip
|
||||
|
||||
### 6.2 Summary report
|
||||
- leak counts by type
|
||||
- top leaking processes (if available)
|
||||
- top resolver destinations
|
||||
- timeline/burst hints
|
||||
|
||||
## 7) Deliverables checklist
|
||||
|
||||
MUST:
|
||||
- new `wtfnet-dnsleak` crate integrated into workspace + CLI
|
||||
- passive capture for UDP/TCP 53 and TCP 853
|
||||
- DoH heuristic classification (confidence-based)
|
||||
- policy engine + Leak-A/B/C/D rules
|
||||
- structured events + human summary
|
||||
- privacy modes full/redacted/minimal
|
||||
- best-effort process attribution with confidence and failure reason
|
||||
|
||||
SHOULD:
|
||||
- saved report file support (`--out report.json`)
|
||||
- route_class inference with policy hints + heuristics
|
||||
|
||||
NICE:
|
||||
- correlation_id (DNS -> subsequent TCP/TLS connection) for Leak-D mismatch indicator
|
||||
|
||||
## 8) Definition of Done
|
||||
|
||||
- v0.4.0 builds on Linux (Debian/Ubuntu) and Windows
|
||||
- `wtfn dns leak watch` detects:
|
||||
- plaintext DNS leaving physical interface (Leak-A)
|
||||
- DoT traffic leaving outside approved egress (Leak-C)
|
||||
- DoH-ish encrypted resolver traffic outside policy (Leak-C)
|
||||
- events include interface + dst + (best-effort) PID/process info
|
||||
- output remains stable and additive; no breaking change to v0.3 commands
|
||||
@@ -29,17 +29,17 @@ This is a practical checklist to execute v0.3.0.
|
||||
- [x] diff categories: add/remove/expired/changed
|
||||
|
||||
## 6) optional LLMNR/NBNS
|
||||
- [ ] implement `discover llmnr`
|
||||
- [ ] implement `discover nbns`
|
||||
- [ ] bounded collection, low-noise
|
||||
- [x] implement `discover llmnr`
|
||||
- [x] implement `discover nbns`
|
||||
- [x] bounded collection, low-noise
|
||||
|
||||
## 7) docs updates
|
||||
- [x] update README roadmap
|
||||
- [ ] update COMMANDS.md with new flags/commands
|
||||
- [ ] add RELEASE_v0.3.0.md
|
||||
- [x] update COMMANDS.md with new flags/commands
|
||||
- [x] add RELEASE_v0.3.0.md
|
||||
|
||||
## 8) optional HTTP/3 (last)
|
||||
- [x] add `http3` cargo feature + deps
|
||||
- [x] implement `--http3` / `--http3-only`
|
||||
- [ ] define error classification for QUIC failures
|
||||
- [ ] keep feature disabled in default builds until stabilized
|
||||
- [x] define error classification for QUIC failures
|
||||
- [x] keep feature disabled in default builds until stabilized
|
||||
|
||||
33
docs/WORK_ITEMS_v0.4.0.md
Normal file
33
docs/WORK_ITEMS_v0.4.0.md
Normal file
@@ -0,0 +1,33 @@
|
||||
# WTFnet v0.4.0 - Work Items
|
||||
|
||||
This is a practical checklist to execute v0.4.0.
|
||||
|
||||
## 1) platform flow ownership
|
||||
- [x] add FlowOwnerProvider trait + data types
|
||||
- [x] implement Linux best-effort lookup
|
||||
- [x] implement Windows best-effort lookup
|
||||
|
||||
## 2) new wtfnet-dnsleak crate
|
||||
- [x] crate scaffold + pcap feature
|
||||
- [x] UDP/TCP 53 capture + classify
|
||||
- [x] DoT detection (TCP 853)
|
||||
- [x] policy model + profiles
|
||||
- [x] leak rules A/B/C (partial)
|
||||
- [x] privacy modes
|
||||
- [x] report + summary builder
|
||||
|
||||
## 3) CLI wiring
|
||||
- [x] add `dns leak status`
|
||||
- [x] add `dns leak watch`
|
||||
- [x] add `dns leak report`
|
||||
|
||||
## 4) docs updates
|
||||
- [x] add `docs/RELEASE_v0.4.0.md`
|
||||
- [x] add `docs/DNS_LEAK_DETECTOR_IMPLEMENTATION.md`
|
||||
- [x] update README roadmap + flags
|
||||
- [x] update COMMANDS.md
|
||||
- [x] update status/implementation docs
|
||||
|
||||
## 5) follow-ups
|
||||
- [ ] add DoH heuristic classification (optional)
|
||||
- [ ] add Leak-D mismatch correlation (optional)
|
||||
723
docs/dns_leak_detection_design.md
Normal file
723
docs/dns_leak_detection_design.md
Normal file
@@ -0,0 +1,723 @@
|
||||
Below is a **high-level (language-agnostic)** design for a **client-side DNS leak detector** aimed at *censorship-resistance threat models*, i.e.:
|
||||
|
||||
> “Censor/ISP can observe/log DNS intent or infer proxy usage; we want to detect when DNS behavior escapes the intended protection path.”
|
||||
|
||||
I’ll cover: **definitions**, **detection standards**, **workflow**, **modules**, **passive+active detection**, **outputs**, and **test methodology**.
|
||||
|
||||
---
|
||||
|
||||
# 1) Scope and goals
|
||||
|
||||
## Goals
|
||||
|
||||
Your detector should answer, with evidence:
|
||||
|
||||
1. **Did any DNS query leave the device outside the intended safe path?**
|
||||
2. **Which domains leaked?** (when visible)
|
||||
3. **Which transport leaked?** (UDP/53, TCP/53, DoT/853, DoH)
|
||||
4. **Which interface leaked?** (Wi-Fi/Ethernet vs tunnel)
|
||||
5. **Which process/app triggered it?** (if your OS allows attribution)
|
||||
|
||||
And in your censorship model, it should also detect:
|
||||
|
||||
6. **Split-policy intent leakage**: “unknown/sensitive domains were resolved using domestic/ISP-facing DNS.”
|
||||
|
||||
## Non-goals (be explicit)
|
||||
|
||||
* Not a censorship circumvention tool itself
|
||||
* Not a full firewall manager (can suggest fixes, but detection is the core)
|
||||
* Not perfect attribution on every OS (process mapping may be partial)
|
||||
|
||||
---
|
||||
|
||||
# 2) Define “DNS leak” precisely (your program’s standard)
|
||||
|
||||
You need a **formal definition** because “DNS leak” is overloaded.
|
||||
|
||||
## Standard definition A (classic VPN / tunnel bypass)
|
||||
|
||||
A leak occurs if:
|
||||
|
||||
> **An unencrypted DNS query is sent outside the secure tunnel path**
|
||||
> This is essentially how popular leak test sites define it (“unencrypted DNS query sent OUTSIDE the established VPN tunnel”). ([IP Leak][1])
|
||||
|
||||
Your detector should implement it in a machine-checkable way:
|
||||
|
||||
**Leak-A condition**
|
||||
|
||||
* DNS over **UDP/53 or TCP/53**
|
||||
* Destination is **not** a “trusted resolver path” (e.g., not the tunnel interface, not loopback stub, not proxy channel)
|
||||
* Interface is **not** the intended egress
|
||||
|
||||
✅ Strong for censorship: plaintext DNS exposes intent.
|
||||
|
||||
---
|
||||
|
||||
## Standard definition B (split-policy intent leak)
|
||||
|
||||
A leak occurs if:
|
||||
|
||||
> **A domain that should be “proxied / remote-resolved” was queried via local/ISP-facing DNS.**
|
||||
|
||||
This is the “proxy split rules still leak intent” case.
|
||||
|
||||
**Leak-B condition**
|
||||
|
||||
* Query name matches either:
|
||||
|
||||
* a “proxy-required set” (sensitive list, non-allowlist, unknown), or
|
||||
* a policy rule (“everything except allowlist must resolve via proxy DNS”)
|
||||
* And the query was observed going to:
|
||||
|
||||
* ISP resolver(s) / domestic resolver(s) / non-tunnel interface
|
||||
|
||||
✅ This is the leak most users in censorship settings care about.
|
||||
|
||||
---
|
||||
|
||||
## Standard definition C (encrypted DNS escape / bypass)
|
||||
|
||||
A leak occurs if:
|
||||
|
||||
> DNS was encrypted, but escaped the intended channel (e.g., app uses its own DoH directly to the Internet).
|
||||
|
||||
This matters because DoH hides the QNAME but still creates **observable behavior** and breaks your “DNS must follow proxy” invariant.
|
||||
|
||||
**Leak-C condition**
|
||||
|
||||
* DoH (RFC 8484) ([IETF Datatracker][2]) or DoT (RFC 7858) ([IETF Datatracker][3]) flow exists
|
||||
* And it does **not** go through your approved egress path (tunnel/proxy)
|
||||
|
||||
✅ Detects “Firefox/Chrome built-in DoH bypass” style cases.
|
||||
|
||||
---
|
||||
|
||||
## Standard definition D (mismatch risk indicator)
|
||||
|
||||
Not a “leak” by itself, but a **proxy inference amplifier**:
|
||||
|
||||
> DNS egress region/path differs from traffic egress region/path.
|
||||
|
||||
This is a *censorship-resistance hygiene metric*, not a binary leak.
|
||||
|
||||
**Mismatch condition**
|
||||
|
||||
* Same domain produces:
|
||||
|
||||
* DNS resolution via path X
|
||||
* TCP/TLS connection via path Y
|
||||
* Where X ≠ Y (interface, ASN region, etc.)
|
||||
|
||||
✅ Helps catch “DNS direct, traffic proxy” or “DNS proxy, traffic direct” weirdness.
|
||||
|
||||
---
|
||||
|
||||
# 3) High-level architecture
|
||||
|
||||
## Core components
|
||||
|
||||
1. **Policy & Configuration**
|
||||
|
||||
* What counts as “safe DNS path”
|
||||
* Which interfaces are “protected” (tunnel) vs “physical”
|
||||
* Allowlist / proxy-required sets (optional)
|
||||
* Known resolver lists (optional)
|
||||
* Severity thresholds
|
||||
|
||||
2. **Traffic Sensor (Passive Monitor)**
|
||||
|
||||
* Captures outbound traffic metadata (and optionally payload for DNS parsing)
|
||||
* Must cover:
|
||||
|
||||
* UDP/53, TCP/53
|
||||
* TCP/853 (DoT)
|
||||
* HTTPS flows that look like DoH (see below)
|
||||
* Emits normalized events into a pipeline
|
||||
|
||||
3. **Classifier**
|
||||
|
||||
* Recognize DNS protocol types:
|
||||
|
||||
* Plain DNS
|
||||
* DoT
|
||||
* DoH
|
||||
* Attach confidence scores (especially for DoH)
|
||||
|
||||
4. **DNS Parser (for plaintext DNS only)**
|
||||
|
||||
* Extract: QNAME, QTYPE, transaction IDs, response codes (optional)
|
||||
* Store minimally (privacy-aware)
|
||||
|
||||
5. **Flow Tracker**
|
||||
|
||||
* Correlate packets into “flows”
|
||||
* Map flow → interface → destination → process (if possible)
|
||||
* Track timing correlation: DNS → connection attempts
|
||||
|
||||
6. **Leak Detector (Rules Engine)**
|
||||
|
||||
* Apply Leak-A/B/C/D definitions
|
||||
* Produce leak events + severity + evidence chain
|
||||
|
||||
7. **Active Prober**
|
||||
|
||||
* Generates controlled DNS lookups to test behavior
|
||||
* Can test fail-closed, bypasses, multi-interface behavior, etc.
|
||||
|
||||
8. **Report Generator**
|
||||
|
||||
* Human-readable summary
|
||||
* Machine-readable logs (JSON)
|
||||
* Recommendations (non-invasive)
|
||||
|
||||
---
|
||||
|
||||
# 4) Workflow (end-to-end)
|
||||
|
||||
## Workflow 0: Setup & baseline
|
||||
|
||||
1. Enumerate interfaces and routes
|
||||
|
||||
* Identify physical NICs
|
||||
* Identify tunnel / proxy interface (or “expected egress destinations”)
|
||||
2. Identify system DNS configuration
|
||||
|
||||
* Default resolvers per interface
|
||||
* Local stub presence (127.0.0.1, etc.)
|
||||
3. Load policy profile
|
||||
|
||||
* Full-tunnel, split-tunnel, or proxy-based
|
||||
4. Start passive monitor
|
||||
|
||||
**Output:** “Current state snapshot” (useful even before testing).
|
||||
|
||||
---
|
||||
|
||||
## Workflow 1: Passive detection loop (always-on)
|
||||
|
||||
Continuously:
|
||||
|
||||
1. Capture outbound packets/flows
|
||||
2. Classify as DNS-like (plain DNS / DoT / DoH / unknown)
|
||||
3. If plaintext DNS → parse QNAME/QTYPE
|
||||
4. Assign metadata:
|
||||
|
||||
* interface
|
||||
* dst IP/port
|
||||
* process (if possible)
|
||||
* timestamp
|
||||
5. Evaluate leak rules:
|
||||
|
||||
* Leak-A/B/C/D
|
||||
6. Write event log + optional real-time alert
|
||||
|
||||
**Key design point:** passive mode should be able to detect leaks **without requiring any special test domain**.
|
||||
|
||||
---
|
||||
|
||||
## Workflow 2: Active test suite (on-demand)
|
||||
|
||||
Active tests exist because some leaks are intermittent or only happen under stress.
|
||||
|
||||
### Active Test A: “No plaintext DNS escape”
|
||||
|
||||
* Trigger a set of DNS queries (unique random domains)
|
||||
* Verify **zero UDP/53 & TCP/53** leaves physical interfaces
|
||||
|
||||
### Active Test B: “Fail-closed test”
|
||||
|
||||
* Temporarily disrupt the “protected path” (e.g., tunnel down)
|
||||
* Trigger lookups again
|
||||
* Expected: DNS fails (no fallback to ISP DNS)
|
||||
|
||||
### Active Test C: “App bypass test”
|
||||
|
||||
* Launch test scenarios that mimic real apps
|
||||
* Confirm no direct DoH/DoT flows go to public Internet outside the proxy path
|
||||
|
||||
### Active Test D: “Split-policy correctness”
|
||||
|
||||
* Query domains that should be:
|
||||
|
||||
* direct-allowed
|
||||
* proxy-required
|
||||
* unknown
|
||||
* Confirm resolution path matches policy
|
||||
|
||||
---
|
||||
|
||||
# 5) How to recognize DNS transports (detection mechanics)
|
||||
|
||||
## Plain DNS (strongest signal)
|
||||
|
||||
**Match conditions**
|
||||
|
||||
* UDP dst port 53 OR TCP dst port 53
|
||||
* Parse DNS header
|
||||
* Extract QNAME/QTYPE
|
||||
|
||||
**Evidence strength:** high
|
||||
**Intent visibility:** yes (domain visible)
|
||||
|
||||
---
|
||||
|
||||
## DoT (port-based, easy)
|
||||
|
||||
DoT is defined over TLS, typically port **853**. ([IETF Datatracker][3])
|
||||
|
||||
**Match conditions**
|
||||
|
||||
* TCP dst port 853
|
||||
* Optionally confirm TLS handshake exists
|
||||
|
||||
**Evidence strength:** high
|
||||
**Intent visibility:** no (domain hidden)
|
||||
|
||||
---
|
||||
|
||||
## DoH (harder; heuristic + optional allowlists)
|
||||
|
||||
DoH is DNS over HTTPS (RFC 8484). ([IETF Datatracker][2])
|
||||
|
||||
**Recognizers (from strongest to weakest):**
|
||||
|
||||
1. HTTP request with `Content-Type: application/dns-message`
|
||||
2. Path/pattern common to DoH endpoints (optional list)
|
||||
3. SNI matches known DoH providers (optional list)
|
||||
4. Traffic resembles frequent small HTTPS POST/GET bursts typical of DoH (weak)
|
||||
|
||||
**Evidence strength:** medium
|
||||
**Intent visibility:** no (domain hidden)
|
||||
|
||||
**Important for your use-case:** you may not need to *prove* it’s DoH; you mostly need to detect “DNS-like encrypted resolver traffic bypassing the proxy channel.”
|
||||
|
||||
---
|
||||
|
||||
# 6) Policy model: define “safe DNS path”
|
||||
|
||||
You need a simple abstraction users can configure:
|
||||
|
||||
### Safe DNS path can be defined by one or more of:
|
||||
|
||||
* **Allowed interfaces**
|
||||
|
||||
* loopback (local stub)
|
||||
* tunnel interface
|
||||
* **Allowed destination set**
|
||||
|
||||
* proxy server IP(s)
|
||||
* internal resolver IP(s)
|
||||
* **Allowed process**
|
||||
|
||||
* only your local stub + proxy allowed to resolve externally
|
||||
* **Allowed port set**
|
||||
|
||||
* maybe only permit 443 to proxy server (if DNS rides inside it)
|
||||
|
||||
Then implement:
|
||||
|
||||
**A DNS event is a “leak” if it violates safe-path constraints.**
|
||||
|
||||
---
|
||||
|
||||
# 7) Leak severity model (useful for real-world debugging)
|
||||
|
||||
### Severity P0 (critical)
|
||||
|
||||
* Plaintext DNS (UDP/TCP 53) on physical interface to ISP/public resolver
|
||||
* Especially if QNAME matches proxy-required/sensitive list
|
||||
|
||||
### Severity P1 (high)
|
||||
|
||||
* DoH/DoT bypassing proxy channel directly to public Internet
|
||||
|
||||
### Severity P2 (medium)
|
||||
|
||||
* Policy mismatch: domain resolved locally but connection later proxied (or vice versa)
|
||||
|
||||
### Severity P3 (low / info)
|
||||
|
||||
* Authoritative-side “resolver egress exposure” (less relevant for client-side leak detector)
|
||||
* CDN performance mismatch indicators
|
||||
|
||||
---
|
||||
|
||||
# 8) Outputs and reporting
|
||||
|
||||
## Real-time console output (for debugging)
|
||||
|
||||
* “DNS leak detected: Plain DNS”
|
||||
* domain (if visible)
|
||||
* destination resolver IP
|
||||
* interface
|
||||
* process name (if available)
|
||||
* policy rule violated
|
||||
* suggested fix category (e.g., “force stub + block port 53”)
|
||||
|
||||
## Forensics log (machine-readable)
|
||||
|
||||
A single **LeakEvent** record could include:
|
||||
|
||||
* timestamp
|
||||
* leak_type (A/B/C/D)
|
||||
* transport (UDP53, TCP53, DoT, DoH)
|
||||
* qname/qtype (nullable)
|
||||
* src_iface / dst_ip / dst_port
|
||||
* process_id/process_name (nullable)
|
||||
* correlation_id (link DNS → subsequent connection attempt)
|
||||
* confidence score (esp. DoH)
|
||||
* raw evidence pointers (pcap offsets / event IDs)
|
||||
|
||||
## Summary report
|
||||
|
||||
* Leak counts by type
|
||||
* Top leaking processes
|
||||
* Top leaking resolver destinations
|
||||
* Timeline view (bursts often indicate OS fallback behavior)
|
||||
* “Pass/Fail” per policy definition
|
||||
|
||||
---
|
||||
|
||||
# 9) Validation strategy (“how do I know my detector is correct?”)
|
||||
|
||||
## Ground truth tests
|
||||
|
||||
1. **Known-leak scenario**
|
||||
|
||||
* intentionally set OS DNS to ISP DNS, no tunnel
|
||||
* detector must catch plaintext DNS
|
||||
|
||||
2. **Known-safe scenario**
|
||||
|
||||
* local stub only + blocked outbound 53/853
|
||||
* detector should show zero leaks
|
||||
|
||||
3. **Bypass scenario**
|
||||
|
||||
* enable browser built-in DoH directly
|
||||
* detector should catch encrypted resolver bypass (Leak-C)
|
||||
|
||||
4. **Split-policy scenario**
|
||||
|
||||
* allowlist CN direct, everything else proxy-resolve
|
||||
* detector should show:
|
||||
|
||||
* allowlist resolved direct
|
||||
* unknown resolved via proxy path
|
||||
|
||||
---
|
||||
|
||||
# 10) Recommended “profiles” (makes tool usable)
|
||||
|
||||
Provide built-in presets:
|
||||
|
||||
### Profile 1: Full-tunnel VPN
|
||||
|
||||
* allow DNS only via tunnel interface or loopback stub
|
||||
* any UDP/TCP 53 on physical NIC = leak
|
||||
|
||||
### Profile 2: Proxy + local stub (your case)
|
||||
|
||||
* allow DNS only to loopback stub
|
||||
* allow stub upstream only via proxy server destinations
|
||||
* flag any direct DoH/DoT to public endpoints
|
||||
|
||||
### Profile 3: Split tunnel (geoip + allowlist)
|
||||
|
||||
* allow plaintext DNS **only** for allowlisted domains (if user accepts risk)
|
||||
* enforce “unknown → proxy-resolve”
|
||||
* emphasize Leak-B correctness
|
||||
|
||||
---
|
||||
|
||||
Below is an updated **high-level design** (still language-agnostic) that integrates **process attribution** cleanly, including how it fits into the workflow and what to log.
|
||||
|
||||
---
|
||||
|
||||
# 1) New component: Process Attribution Engine (PAE)
|
||||
|
||||
## Purpose
|
||||
|
||||
When a DNS-like event is observed, the PAE tries to attach:
|
||||
|
||||
* **PID**
|
||||
* **PPID**
|
||||
* **process name**
|
||||
* *(optional but extremely useful)* full command line, executable path, user, container/app package, etc.
|
||||
|
||||
This lets your logs answer:
|
||||
|
||||
> “Which program generated the leaked DNS request?”
|
||||
> “Was it a browser, OS service, updater, antivirus, proxy itself, or some library?”
|
||||
|
||||
## Position in the pipeline
|
||||
|
||||
It sits between **Traffic Sensor** and **Leak Detector** as an “event enricher”:
|
||||
|
||||
**Traffic Event → (Classifier) → (Process Attribution) → Enriched Event → Leak Rules → Report**
|
||||
|
||||
---
|
||||
|
||||
# 2) Updated architecture (with process attribution)
|
||||
|
||||
### Existing modules (from earlier design)
|
||||
|
||||
1. Policy & Configuration
|
||||
2. Traffic Sensor (packet/flow monitor)
|
||||
3. Classifier (Plain DNS / DoT / DoH / Unknown)
|
||||
4. DNS Parser (plaintext only)
|
||||
5. Flow Tracker
|
||||
6. Leak Detector (rules engine)
|
||||
7. Active Prober
|
||||
8. Report Generator
|
||||
|
||||
### New module
|
||||
|
||||
9. **Process Attribution Engine (PAE)**
|
||||
|
||||
* resolves “who owns this flow / packet”
|
||||
* emits PID/PPID/name
|
||||
* handles platform-specific differences and fallbacks
|
||||
|
||||
---
|
||||
|
||||
# 3) Workflow changes (what happens when a potential leak is seen)
|
||||
|
||||
## Passive detection loop (updated)
|
||||
|
||||
1. Capture outbound traffic event
|
||||
2. Classify transport type:
|
||||
|
||||
* UDP/53, TCP/53 → plaintext DNS
|
||||
* TCP/853 → DoT
|
||||
* HTTPS patterns → DoH (heuristic)
|
||||
3. Extract the **5-tuple**
|
||||
|
||||
* src IP:port, dst IP:port, protocol
|
||||
4. **PAE lookup**
|
||||
|
||||
* resolve the owner process for this traffic
|
||||
* attach PID/PPID/name (+ optional metadata)
|
||||
5. Apply leak rules (A/B/C/D)
|
||||
6. Emit:
|
||||
|
||||
* realtime log line (human readable)
|
||||
* structured record (JSON/event log)
|
||||
|
||||
---
|
||||
|
||||
# 4) Process attribution: what to detect and how (high-level)
|
||||
|
||||
Process attribution always works on one core concept:
|
||||
|
||||
> **Map observed traffic (socket/flow) → owning process**
|
||||
|
||||
### Inputs PAE needs
|
||||
|
||||
* protocol (UDP/TCP)
|
||||
* local src port
|
||||
* local address
|
||||
* timestamp
|
||||
* optionally: connection state / flow ID
|
||||
|
||||
### Output from PAE
|
||||
|
||||
* `pid`, `ppid`, `process_name`
|
||||
* optional enrichment:
|
||||
|
||||
* `exe_path`
|
||||
* `cmdline`
|
||||
* `user`
|
||||
* “process tree chain” (for debugging: parent → child → …)
|
||||
|
||||
---
|
||||
|
||||
# 5) Platform support strategy (without implementation detail)
|
||||
|
||||
Process attribution is **OS-specific**, so structure it as:
|
||||
|
||||
## “Attribution Provider” interface
|
||||
|
||||
* Provider A: “kernel-level flow owner”
|
||||
* Provider B: “socket table owner lookup”
|
||||
* Provider C: “event tracing feed”
|
||||
* Provider D: fallback “unknown / not supported”
|
||||
|
||||
Your main design goal is:
|
||||
|
||||
### Design rule
|
||||
|
||||
**Attribution must be best-effort + gracefully degrading**, never blocking detection.
|
||||
|
||||
So you always log the leak even if PID is unavailable:
|
||||
|
||||
* `pid=null, attribution_confidence=LOW`
|
||||
|
||||
---
|
||||
|
||||
# 6) Attribution confidence + race handling (important!)
|
||||
|
||||
Attribution can be tricky because:
|
||||
|
||||
* a process may exit quickly (“short-lived resolver helper”)
|
||||
* ports can be reused
|
||||
* NAT or local proxies may obscure the real origin
|
||||
|
||||
So log **confidence**:
|
||||
|
||||
* **HIGH**: direct mapping from kernel/socket owner at time of event
|
||||
* **MEDIUM**: mapping by lookup shortly after event (possible race)
|
||||
* **LOW**: inferred / uncertain
|
||||
* **NONE**: not resolved
|
||||
|
||||
Also record *why* attribution failed:
|
||||
|
||||
* “permission denied”
|
||||
* “flow already gone”
|
||||
* “unsupported transport”
|
||||
* “ambiguous mapping”
|
||||
|
||||
This makes debugging much easier.
|
||||
|
||||
---
|
||||
|
||||
# 7) What PID/PPID adds to your leak definitions
|
||||
|
||||
### Leak-A (plaintext DNS outside safe path)
|
||||
|
||||
Now you can say:
|
||||
|
||||
> “`svchost.exe (PID 1234)` sent UDP/53 to ISP resolver on Wi-Fi interface”
|
||||
|
||||
### Leak-B (split-policy intent leak)
|
||||
|
||||
You can catch:
|
||||
|
||||
* “game launcher looked up blocked domain”
|
||||
* “system service triggered a sensitive name unexpectedly”
|
||||
* “your proxy itself isn’t actually resolving via its own channel”
|
||||
|
||||
### Leak-C (encrypted DNS bypass)
|
||||
|
||||
This becomes *very actionable*:
|
||||
|
||||
> “`firefox.exe` started direct DoH to resolver outside tunnel”
|
||||
|
||||
### Leak-D (mismatch indicator)
|
||||
|
||||
You can also correlate:
|
||||
|
||||
* DNS resolved by one process
|
||||
* connection made by another process
|
||||
(e.g., local stub vs app)
|
||||
|
||||
---
|
||||
|
||||
# 8) Reporting / realtime logging format (updated)
|
||||
|
||||
## Realtime log line (human readable)
|
||||
|
||||
Example (conceptual):
|
||||
|
||||
* **[P0][Leak-A] Plain DNS leaked**
|
||||
|
||||
* Domain: `example-sensitive.com` (A)
|
||||
* From: `Wi-Fi` → To: `1.2.3.4:53`
|
||||
* Process: `browser.exe` **PID=4321 PPID=1200**
|
||||
* Policy violated: “No UDP/53 on physical NIC”
|
||||
|
||||
## Structured event (JSON-style fields)
|
||||
|
||||
Minimum recommended fields:
|
||||
|
||||
### Event identity
|
||||
|
||||
* `event_id`
|
||||
* `timestamp`
|
||||
|
||||
### DNS identity
|
||||
|
||||
* `transport` (udp53/tcp53/dot/doh/unknown)
|
||||
* `qname` (nullable)
|
||||
* `qtype` (nullable)
|
||||
|
||||
### Network path
|
||||
|
||||
* `interface_name`
|
||||
* `src_ip`, `src_port`
|
||||
* `dst_ip`, `dst_port`
|
||||
* `route_class` (tunnel / physical / loopback)
|
||||
|
||||
### Process identity (your requested additions)
|
||||
|
||||
* `pid`
|
||||
* `ppid`
|
||||
* `process_name`
|
||||
* optional:
|
||||
|
||||
* `exe_path`
|
||||
* `cmdline`
|
||||
* `user`
|
||||
|
||||
### Detection result
|
||||
|
||||
* `leak_type` (A/B/C/D)
|
||||
* `severity` (P0..P3)
|
||||
* `policy_rule_id`
|
||||
* `attribution_confidence`
|
||||
|
||||
---
|
||||
|
||||
# 9) Privacy and safety notes (important in a DNS tool)
|
||||
|
||||
Because you’re logging **domains** and **process command lines**, this becomes sensitive.
|
||||
|
||||
Add a “privacy mode” policy:
|
||||
|
||||
* **Full**: store full domain + cmdline
|
||||
* **Redacted**: hash domain; keep TLD only; truncate cmdline
|
||||
* **Minimal**: only keep leak counts + resolver IPs + process name
|
||||
|
||||
Also allow “capture window” (rotate logs, avoid giant histories).
|
||||
|
||||
---
|
||||
|
||||
# 10) UX feature: “Show me the process tree”
|
||||
|
||||
When a leak happens, a good debugger view is:
|
||||
|
||||
* `PID: foo (pid 1000)`
|
||||
|
||||
* `PPID: bar (pid 900)`
|
||||
|
||||
* `PPID: systemd/svchost/etc`
|
||||
|
||||
This is extremely useful to identify:
|
||||
|
||||
* browsers spawning helpers
|
||||
* OS DNS services
|
||||
* containerized processes
|
||||
* update agents / telemetry daemons
|
||||
|
||||
So your report generator should support:
|
||||
|
||||
✅ **Process chain rendering** (where possible)
|
||||
|
||||
---
|
||||
|
||||
# 11) Practical edge cases you should detect (with PID helping)
|
||||
|
||||
1. **Local stub is fine, upstream isn’t**
|
||||
|
||||
* Your local resolver process leaks upstream plaintext DNS
|
||||
2. **Browser uses its own DoH**
|
||||
|
||||
* process attribution immediately reveals it
|
||||
3. **Multiple interfaces**
|
||||
|
||||
* a leak only happens on Wi-Fi but not Ethernet
|
||||
4. **Kill-switch failure**
|
||||
|
||||
* when tunnel drops, PID shows which app starts leaking first
|
||||
|
||||
---
|
||||
42
docs/dns_leak_implementation_status.md
Normal file
42
docs/dns_leak_implementation_status.md
Normal file
@@ -0,0 +1,42 @@
|
||||
# DNS Leak Detection - Implementation Status
|
||||
|
||||
This document tracks the current DNS leak detector implementation against the design in
|
||||
`docs/dns_leak_detection_design.md` and `docs/requirement_docs_v0.4.md`.
|
||||
|
||||
## Implemented
|
||||
- New `wtfnet-dnsleak` crate with passive capture (pcap feature).
|
||||
- Transport classification:
|
||||
- Plain DNS (UDP/53, TCP/53) with qname/qtype parsing.
|
||||
- DoT (TCP/853) detection.
|
||||
- DoH detection is not implemented (skipped for now).
|
||||
- Leak rules:
|
||||
- Leak-A (plaintext DNS outside safe path).
|
||||
- Leak-B (split-policy intent leak based on proxy-required/allowlist domains).
|
||||
- Leak-C (encrypted DNS bypass for DoT).
|
||||
- Policy profiles: `full-tunnel`, `proxy-stub`, `split`.
|
||||
- Privacy modes: full/redacted/minimal (redacts qname).
|
||||
- Process attribution:
|
||||
- Best-effort `FlowOwnerProvider` with Linux `/proc` and Windows `netstat` lookups.
|
||||
- Confidence levels and failure reasons exposed in events.
|
||||
- CLI commands:
|
||||
- `dns leak status`
|
||||
- `dns leak watch`
|
||||
- `dns leak report`
|
||||
- `dns leak watch --iface-diag` (diagnostics for capture-capable interfaces).
|
||||
- Interface selection:
|
||||
- per-interface open timeout to avoid capture hangs
|
||||
- stable default pick (up, non-loopback, named ethernet/wlan) before fallback scan
|
||||
|
||||
## Partially implemented
|
||||
- Route/interface classification: heuristic only (loopback/tunnel/physical by iface name).
|
||||
- Safe path matching: allowed ifaces/dests/ports/processes; no route-based policy.
|
||||
|
||||
## Not implemented (v0.4 backlog)
|
||||
- DoH heuristic detection (SNI/endpoint list/traffic shape).
|
||||
- Leak-D mismatch correlation (DNS -> TCP/TLS flows).
|
||||
- GeoIP enrichment of leak events.
|
||||
- Process tree reporting (PPID chain).
|
||||
|
||||
## Known limitations
|
||||
- On Windows, pcap capture may require selecting a specific NPF interface; use
|
||||
`dns leak watch --iface-diag` to list interfaces that can be opened.
|
||||
@@ -9,9 +9,10 @@ This document tracks current implementation status against the original design i
|
||||
- GeoIP: local GeoLite2 Country + ASN support.
|
||||
- Probe: ping/tcping/trace with GeoIP enrichment.
|
||||
- DNS: Hickory-based query/detect with best-effort heuristics.
|
||||
- DNS leak detection: new passive monitor with policy and privacy modes (best-effort).
|
||||
- HTTP: head/get via reqwest with best-effort timing breakdown and optional HTTP/3 (feature-gated).
|
||||
- TLS: rustls-based handshake/verify/cert/alpn.
|
||||
- Discover: mDNS/SSDP bounded collection.
|
||||
- Discover: mDNS/SSDP bounded collection plus LLMNR/NBNS (best-effort).
|
||||
- Diag: bundle export in zip.
|
||||
|
||||
## Deviations or refinements
|
||||
@@ -23,7 +24,7 @@ This document tracks current implementation status against the original design i
|
||||
## Gaps vs design (as of now)
|
||||
- HTTP/3 is feature-gated and incomplete; not enabled in default builds.
|
||||
- TLS verification is rustls-based (no OS-native verifier).
|
||||
- Discover does not include LLMNR/NBNS.
|
||||
- DNS leak DoH detection is heuristic and currently optional.
|
||||
|
||||
## Current stage summary
|
||||
- v0.1 scope is complete.
|
||||
|
||||
484
docs/requirement_docs_v0.4.md
Normal file
484
docs/requirement_docs_v0.4.md
Normal file
@@ -0,0 +1,484 @@
|
||||
Yep — your DNS leak detector design **fits your current architecture cleanly**, and **making it a dedicated subcrate is the right move**.
|
||||
|
||||
Your existing workspace already follows “thin CLI + feature crates + platform traits + OS dispatch”, so the detector drops in naturally as **one new feature crate** plus a small extension to `wtfnet-platform` for **best-effort process attribution**. This matches the design’s pipeline idea: **Traffic Sensor → Classifier → (Process Attribution) → Leak Rules → Report**
|
||||
|
||||
Below I’ll do two things:
|
||||
|
||||
1. **Evaluate fit + integration plan** (what needs changing / what can be reused)
|
||||
2. Provide **repo-ready v0.4.0 documents**, focused on implementing this detector.
|
||||
|
||||
---
|
||||
|
||||
# 1) Can this design fit your current architecture?
|
||||
|
||||
## ✅ Yes — it matches your crate boundaries almost 1:1
|
||||
|
||||
Your detector design already breaks down into modules that map directly into a new subcrate:
|
||||
|
||||
* Policy & Configuration
|
||||
* Passive Traffic Sensor (UDP53/TCP53/853/“DoH-ish”)
|
||||
* Classifier (DNS / DoT / DoH + confidence)
|
||||
* DNS Parser (plaintext only)
|
||||
* Flow Tracker (interface/route/process correlation)
|
||||
* Leak Detector rules A/B/C/D
|
||||
* Report generator + structured events
|
||||
|
||||
So: **new crate = `wtfnet-dnsleak`**, and keep `wtfnet-dns` for **active query/detect/watch** (already exists).
|
||||
|
||||
## ✅ What you can reuse immediately
|
||||
|
||||
### Reuse from your current codebase
|
||||
|
||||
* `wtfnet-dns watch` capture plumbing (you already have passive-ish capture)
|
||||
* existing DNS parsing logic (for UDP/TCP 53)
|
||||
* existing GeoIP enrichment pipeline (optional)
|
||||
* `wtfnet-platform` interface snapshot + routing info (for “which interface leaked?”)
|
||||
* your JSON output envelope + logging style
|
||||
|
||||
### Reuse from the detector design directly
|
||||
|
||||
* Leak definitions A/B/C/D (this is already precise and CLI-tool friendly)
|
||||
* DoH recognition levels + confidence model (strong → weak)
|
||||
* “safe DNS path” abstraction (interfaces/dests/process/ports)
|
||||
* process attribution confidence levels and failure reasons
|
||||
* privacy modes (Full/Redacted/Minimal)
|
||||
|
||||
## ✅ What you’ll need to add (small + contained)
|
||||
|
||||
### 1) New platform trait for flow → process owner (best effort)
|
||||
|
||||
Your design explicitly wants PID/PPID/process name to show “who leaked DNS” , and it recommends an OS-specific provider interface .
|
||||
|
||||
So extend `wtfnet-platform` with something like:
|
||||
|
||||
* `FlowOwnerProvider::owner_of(tuple, timestamp) -> ProcessInfo + confidence`
|
||||
|
||||
This stays consistent with your existing “platform traits + OS dispatch” architecture.
|
||||
|
||||
### 2) Route/interface classification (“tunnel vs physical vs loopback”)
|
||||
|
||||
Your event schema wants `route_class` (tunnel/physical/loopback) .
|
||||
Implement this via **policy-configured interface labels** + a small heuristic fallback.
|
||||
|
||||
### 3) DoH detection will be heuristic (and that’s OK)
|
||||
|
||||
Your design already plans for this: DoH classification is “hard”, confidence-based .
|
||||
In v0.4, keep it simple:
|
||||
|
||||
* DoT = TCP/853
|
||||
* Plain DNS = UDP/TCP 53 (+ parse QNAME)
|
||||
* “DoH-ish” = TCP/443 to known resolver host/IP OR “small HTTPS bursts” pattern
|
||||
…and attach confidence.
|
||||
|
||||
---
|
||||
|
||||
# 2) v0.4.0 documents (repo-ready)
|
||||
|
||||
Below are two docs you can drop into `docs/`.
|
||||
|
||||
---
|
||||
|
||||
## `docs/RELEASE_v0.4.0.md`
|
||||
|
||||
```markdown
|
||||
# WTFnet v0.4.0 — DNS Leak Detection
|
||||
|
||||
v0.4.0 introduces a client-side DNS leak detector aimed at censorship-resistance threat models:
|
||||
detect when DNS behavior escapes the intended safe path. The detector focuses on evidence:
|
||||
transport, interface, destination, and (best-effort) process attribution.
|
||||
|
||||
This release does NOT include HTTP/3 or OS-native TLS verification.
|
||||
|
||||
---
|
||||
|
||||
## 0) Summary
|
||||
|
||||
New major capability: `dns leak` command group.
|
||||
|
||||
Core idea:
|
||||
Passive monitor captures outbound DNS-like traffic → classify (Plain DNS / DoT / DoH) →
|
||||
enrich with interface/route/process metadata → evaluate leak definitions (A/B/C/D) →
|
||||
emit events + summary report.
|
||||
|
||||
Leak definitions are explicit:
|
||||
- Leak-A: plaintext DNS outside safe path
|
||||
- Leak-B: split-policy intent leak (proxy-required domains resolved via ISP/local path)
|
||||
- Leak-C: encrypted DNS escape/bypass (DoH/DoT outside approved egress)
|
||||
- Leak-D: mismatch risk indicator (DNS egress differs from TCP/TLS egress)
|
||||
|
||||
---
|
||||
|
||||
## 1) Goals
|
||||
|
||||
### G1. Detect DNS leaks without needing special test domains
|
||||
Passive detection must work continuously and produce evidence.
|
||||
|
||||
### G2. Support censorship-resistance leak definitions
|
||||
Include both classic VPN-bypass leaks and split-policy intent leaks.
|
||||
|
||||
### G3. Best-effort process attribution
|
||||
Attach PID/PPID/process name when OS allows; degrade gracefully with confidence.
|
||||
|
||||
### G4. Privacy-aware by default
|
||||
Support privacy modes: Full / Redacted / Minimal.
|
||||
|
||||
---
|
||||
|
||||
## 2) Non-goals (v0.4.0)
|
||||
|
||||
- No "doctor" / smart one-shot diagnosis command
|
||||
- No shell completions / man pages
|
||||
- No HTTP/3 support
|
||||
- No OS-native TLS verifier integration
|
||||
- No firewall modification / "kill switch" management (detection only)
|
||||
|
||||
---
|
||||
|
||||
## 3) New crates / architecture changes
|
||||
|
||||
### 3.1 New subcrate: `wtfnet-dnsleak`
|
||||
Responsibilities:
|
||||
- passive sensor (pcap/pnet feature-gated)
|
||||
- DNS parser (plaintext only)
|
||||
- transport classifier: udp53/tcp53/dot/doh (confidence)
|
||||
- flow tracker + metadata enrichment
|
||||
- process attribution integration
|
||||
- leak rules engine (A/B/C/D)
|
||||
- structured event + summary report builder
|
||||
|
||||
### 3.2 `wtfnet-platform` extension: flow ownership lookup
|
||||
Add a new trait:
|
||||
- FlowOwnerProvider: map observed traffic 5-tuple → process info (best-effort)
|
||||
|
||||
Return process attribution confidence:
|
||||
HIGH/MEDIUM/LOW/NONE plus failure reason.
|
||||
|
||||
---
|
||||
|
||||
## 4) CLI scope
|
||||
|
||||
### 4.1 Commands
|
||||
New command group:
|
||||
|
||||
#### `wtfn dns leak watch`
|
||||
Start passive monitoring for a bounded duration (default 10s):
|
||||
- classify transports (udp53/tcp53/dot/doh)
|
||||
- apply leak rules and emit events + summary
|
||||
|
||||
#### `wtfn dns leak status`
|
||||
Print baseline snapshot:
|
||||
- interfaces + routes
|
||||
- system DNS configuration
|
||||
- active policy summary
|
||||
|
||||
#### `wtfn dns leak report`
|
||||
Parse a saved events file and produce a human summary.
|
||||
|
||||
### 4.2 Flags (proposed)
|
||||
Common:
|
||||
- `--duration <Ns|Nms>` (default 10s)
|
||||
- `--iface <name>` (optional capture interface)
|
||||
- `--policy <path>` (JSON policy file)
|
||||
- `--profile <full-tunnel|proxy-stub|split>` (built-in presets)
|
||||
- `--privacy <full|redacted|minimal>` (default redacted)
|
||||
- `--geoip` (include GeoIP in event outputs)
|
||||
- `--out <path>` (write JSON report/events)
|
||||
|
||||
---
|
||||
|
||||
## 5) Policy model (v0.4.0)
|
||||
|
||||
Safe DNS path constraints can be defined by:
|
||||
- allowed interfaces: loopback/tunnel
|
||||
- allowed destination set: proxy IPs, internal resolvers
|
||||
- allowed processes: only local stub/proxy can resolve upstream
|
||||
- allowed ports: e.g. only 443 to proxy server
|
||||
|
||||
A DNS event is a leak if it violates safe-path constraints.
|
||||
|
||||
Built-in profiles:
|
||||
1) full-tunnel VPN style
|
||||
2) proxy + local stub (default, censorship model)
|
||||
3) split policy
|
||||
|
||||
---
|
||||
|
||||
## 6) Outputs
|
||||
|
||||
### 6.1 Leak events (structured)
|
||||
Each LeakEvent includes:
|
||||
- timestamp
|
||||
- transport: udp53/tcp53/dot/doh/unknown
|
||||
- qname/qtype (nullable)
|
||||
- interface + route_class
|
||||
- dst ip:port
|
||||
- process info (nullable) + attribution confidence
|
||||
- leak_type: A/B/C/D
|
||||
- severity: P0..P3
|
||||
- evidence fields + optional geoip
|
||||
|
||||
### 6.2 Summary report
|
||||
- leak counts by type
|
||||
- top leaking processes (if available)
|
||||
- top resolver destinations
|
||||
- timeline/burst hints
|
||||
|
||||
---
|
||||
|
||||
## 7) Deliverables checklist
|
||||
|
||||
MUST:
|
||||
- new `wtfnet-dnsleak` crate integrated into workspace + CLI
|
||||
- passive capture for UDP/TCP 53 and TCP 853
|
||||
- DoH heuristic classification (confidence-based)
|
||||
- policy engine + Leak-A/B/C/D rules
|
||||
- structured events + human summary
|
||||
- privacy modes full/redacted/minimal
|
||||
- best-effort process attribution with confidence and failure reason
|
||||
|
||||
SHOULD:
|
||||
- saved report file support (`--out report.json`)
|
||||
- route_class inference with policy hints + heuristics
|
||||
|
||||
NICE:
|
||||
- correlation_id (DNS → subsequent TCP/TLS connection) for Leak-D mismatch indicator
|
||||
|
||||
---
|
||||
|
||||
## 8) Definition of Done
|
||||
|
||||
- v0.4.0 builds on Linux (Debian/Ubuntu) and Windows
|
||||
- `wtfn dns leak watch` detects:
|
||||
- plaintext DNS leaving physical interface (Leak-A)
|
||||
- DoT traffic leaving outside approved egress (Leak-C)
|
||||
- DoH-ish encrypted resolver traffic outside policy (Leak-C)
|
||||
- events include interface + dst + (best-effort) PID/process info
|
||||
- output remains stable and additive; no breaking change to v0.3 commands
|
||||
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## `docs/DNS_LEAK_DETECTOR_IMPLEMENTATION.md`
|
||||
|
||||
```markdown
|
||||
# DNS Leak Detector — Implementation Guide (v0.4)
|
||||
|
||||
This document explains how to implement the DNS leak detector as a new subcrate in WTFnet.
|
||||
|
||||
---
|
||||
|
||||
## 1) New crate: `wtfnet-dnsleak`
|
||||
|
||||
### 1.1 Module layout
|
||||
|
||||
crates/wtfnet-dnsleak/src/
|
||||
- lib.rs
|
||||
- policy.rs # safe path constraints + presets
|
||||
- sensor.rs # passive capture -> normalized TrafficEvent stream
|
||||
- classify.rs # transport classification + confidence
|
||||
- parse_dns.rs # plaintext DNS parser: qname/qtype
|
||||
- attrib.rs # process attribution integration (platform provider)
|
||||
- route.rs # interface/route classification (tunnel/physical/loopback)
|
||||
- rules.rs # Leak-A/B/C/D evaluation
|
||||
- report.rs # LeakEvent + SummaryReport builders
|
||||
- privacy.rs # full/redacted/minimal redaction logic
|
||||
|
||||
---
|
||||
|
||||
## 2) Core data types
|
||||
|
||||
### 2.1 TrafficEvent (raw from sensor)
|
||||
Fields:
|
||||
- ts: timestamp
|
||||
- proto: udp/tcp
|
||||
- src_ip, src_port
|
||||
- dst_ip, dst_port
|
||||
- iface_name (capture interface if known)
|
||||
- payload: optional bytes (only for plaintext DNS parsing)
|
||||
|
||||
### 2.2 ClassifiedEvent
|
||||
Adds:
|
||||
- transport: udp53/tcp53/dot/doh/unknown
|
||||
- doh_confidence: HIGH/MEDIUM/LOW (only if doh)
|
||||
- qname/qtype: nullable
|
||||
|
||||
### 2.3 EnrichedEvent
|
||||
Adds:
|
||||
- route_class: loopback/tunnel/physical/unknown
|
||||
- process info: pid/ppid/name (nullable)
|
||||
- attribution_confidence: HIGH/MEDIUM/LOW/NONE
|
||||
- attrib_failure_reason: optional string
|
||||
- geoip: optional
|
||||
|
||||
### 2.4 LeakEvent (final output)
|
||||
Adds:
|
||||
- leak_type: A/B/C/D
|
||||
- severity: P0..P3
|
||||
- policy_rule_id
|
||||
- evidence: minimal structured evidence
|
||||
|
||||
---
|
||||
|
||||
## 3) Platform integration: Process Attribution Engine (PAE)
|
||||
|
||||
### 3.1 Trait addition (wtfnet-platform)
|
||||
|
||||
Add:
|
||||
trait FlowOwnerProvider {
|
||||
fn owner_of(
|
||||
&self,
|
||||
proto: Proto,
|
||||
src_ip: IpAddr,
|
||||
src_port: u16,
|
||||
dst_ip: IpAddr,
|
||||
dst_port: u16,
|
||||
ts: SystemTime,
|
||||
) -> FlowOwnerResult;
|
||||
}
|
||||
|
||||
FlowOwnerResult:
|
||||
- pid, ppid, process_name (optional)
|
||||
- confidence: HIGH/MEDIUM/LOW/NONE
|
||||
- failure_reason: optional string
|
||||
|
||||
Design rule: attribution is best-effort and never blocks leak detection.
|
||||
|
||||
---
|
||||
|
||||
## 4) Transport classification logic
|
||||
|
||||
### 4.1 Plain DNS
|
||||
Match:
|
||||
- UDP dst port 53 OR TCP dst port 53
|
||||
Parse QNAME/QTYPE from payload.
|
||||
|
||||
### 4.2 DoT
|
||||
Match:
|
||||
- TCP dst port 853
|
||||
|
||||
### 4.3 DoH (heuristic)
|
||||
Match candidates:
|
||||
- TCP dst port 443 AND (one of):
|
||||
- dst IP in configured DoH resolver list
|
||||
- dst SNI matches known DoH provider list (if available)
|
||||
- frequent small HTTPS bursts pattern (weak)
|
||||
|
||||
Attach confidence:
|
||||
- MEDIUM: known endpoint match
|
||||
- LOW: traffic-shape heuristic only
|
||||
|
||||
Important: you mostly need to detect encrypted resolver traffic bypassing the proxy channel,
|
||||
not to fully prove DoH with payload inspection.
|
||||
|
||||
---
|
||||
|
||||
## 5) Policy model
|
||||
|
||||
Policy defines "safe DNS path" constraints:
|
||||
- allowed interfaces
|
||||
- allowed destinations (IP/CIDR)
|
||||
- allowed processes
|
||||
- allowed ports
|
||||
|
||||
A DNS event is a leak if it violates safe-path constraints.
|
||||
|
||||
### 5.1 Built-in profiles
|
||||
|
||||
full-tunnel:
|
||||
- allow DNS only via tunnel iface or loopback stub
|
||||
- any UDP/TCP 53 on physical iface => Leak-A
|
||||
|
||||
proxy-stub (default):
|
||||
- allow DNS only to loopback stub
|
||||
- allow stub upstream only to proxy destinations
|
||||
- flag direct DoH/DoT outside proxy path => Leak-C
|
||||
|
||||
split:
|
||||
- allow plaintext DNS only for allowlist
|
||||
- enforce unknown => proxy resolve (Leak-B)
|
||||
|
||||
---
|
||||
|
||||
## 6) Leak rules (A/B/C/D)
|
||||
|
||||
Leak-A (plaintext escape):
|
||||
- transport udp53/tcp53
|
||||
- route_class != allowed
|
||||
- dst not in allowed destination set
|
||||
|
||||
Leak-B (split policy intent leak):
|
||||
- qname matches proxy-required set or "unknown"
|
||||
- query observed going to ISP/domicile resolver or non-tunnel iface
|
||||
|
||||
Leak-C (encrypted bypass):
|
||||
- DoT or DoH flow exists
|
||||
- not via approved egress path (iface/destination)
|
||||
|
||||
Leak-D (mismatch indicator):
|
||||
- correlate qname to later TCP/TLS flows (optional v0.4 NICE)
|
||||
|
||||
---
|
||||
|
||||
## 7) Privacy modes
|
||||
|
||||
Because domains and cmdlines are sensitive, support:
|
||||
- Full: store full qname and cmdline
|
||||
- Redacted (default): hash qname or keep eTLD+1 only; truncate cmdline
|
||||
- Minimal: no domains/cmdline; keep leak counts + resolver IPs + process name
|
||||
|
||||
Privacy mode applies in report builder, not in sensor.
|
||||
|
||||
---
|
||||
|
||||
## 8) CLI integration
|
||||
|
||||
Add under `dns` command group:
|
||||
|
||||
- `dns leak status`
|
||||
- `dns leak watch`
|
||||
- `dns leak report`
|
||||
|
||||
`watch` returns:
|
||||
- summary report (human) by default
|
||||
- `--json` returns structured report with events list
|
||||
|
||||
---
|
||||
|
||||
## 9) Recommended incremental build plan
|
||||
|
||||
Phase 1 (core passive detection):
|
||||
- sensor: udp/tcp capture
|
||||
- classify: udp53/tcp53/dot
|
||||
- parse plaintext qname/qtype
|
||||
- policy: allowlist + allowed interfaces/dests
|
||||
- leak rules: Leak-A + Leak-C (DoT)
|
||||
- report: events + summary
|
||||
|
||||
Phase 2 (process attribution + DoH heuristics):
|
||||
- platform FlowOwnerProvider impls
|
||||
- DoH heuristic classification + confidence
|
||||
- privacy modes
|
||||
|
||||
Phase 3 (optional correlation / Leak-D):
|
||||
- flow tracker correlating DNS -> TCP/TLS connect events
|
||||
- mismatch indicator output
|
||||
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
# Small note about *where* it lives in your architecture
|
||||
|
||||
This design slots in with **minimal churn**:
|
||||
|
||||
* ✅ Add `crates/wtfnet-dnsleak`
|
||||
* ✅ Add `dns leak ...` subcommands in CLI
|
||||
* ✅ Add a **single** new platform trait for process attribution (best-effort)
|
||||
* ✅ Reuse your existing `dns watch` capture approach as the sensor
|
||||
|
||||
…which is exactly what your design describes: passive monitoring + classification + rules + evidence output and the PAE “event enricher” location in the pipeline .
|
||||
|
||||
**If it's too hard to detect DoH traffic, skip it.**
|
||||
|
||||
---
|
||||
@@ -29,6 +29,11 @@ This document tracks the planned roadmap alongside the current implementation st
|
||||
- optional LLMNR/NBNS discovery
|
||||
- optional HTTP/3 (feature-gated; experimental, incomplete)
|
||||
|
||||
### v0.4 (dns leak detection)
|
||||
- dns leak detector (passive watch + report)
|
||||
- process attribution (best-effort)
|
||||
- policy profiles + privacy modes
|
||||
|
||||
## Current stage
|
||||
|
||||
### Implemented
|
||||
@@ -69,13 +74,20 @@ This document tracks the planned roadmap alongside the current implementation st
|
||||
- v0.3: TLS extras (OCSP flag + richer cert parsing).
|
||||
- v0.3: cert baseline/diff improvements.
|
||||
- v0.3: HTTP/3 request path (feature-gated; experimental, incomplete).
|
||||
- v0.3: HTTP/3 error classification (feature-gated).
|
||||
- v0.4: platform flow-owner lookup (best-effort).
|
||||
- v0.4: dns leak detector crate + CLI commands (status/watch/report).
|
||||
- Discover crate with mdns/ssdp commands.
|
||||
- Discover llmnr/nbns (best-effort).
|
||||
- Diag crate with report and bundle export.
|
||||
- Basic unit tests for calc and TLS parsing.
|
||||
|
||||
### In progress
|
||||
- v0.4: DoH heuristic classification (optional).
|
||||
- v0.4: Leak-D mismatch correlation (optional).
|
||||
- v0.3: optional HTTP/3 (feature-gated; keep disabled until stabilized).
|
||||
|
||||
### Next
|
||||
- Complete v0.3 trace upgrades and update CLI output.
|
||||
- Update docs/README/COMMANDS for v0.4.
|
||||
- Add v0.2 tests (dns detect, basic http/tls smoke).
|
||||
- Track DNS leak design status in `docs/dns_leak_implementation_status.md`.
|
||||
|
||||
Reference in New Issue
Block a user