Compare commits

3 Commits

2 changed files with 1008 additions and 193 deletions

View File

@@ -1,4 +1,3 @@
## Testing enviornment setup
Install tools:
@@ -191,3 +190,344 @@ Fix direction:
move to smol::Executor + N threads (usually num_cpus)
or run multiple block_on() workers (careful: avoid accept() duplication)
## outcome oi
### CPU hotspot
testing commands:
```bash
iperf3 -c 127.0.0.1 -p 9000 -t 30 -P 1
sudo perf stat -p $(pidof oi) -e \
cycles,instructions,cache-misses,branches,branch-misses,context-switches,cpu-migrations \
-- sleep 30
```
perf report:
```text
Performance counter stats for process id '207279':
98,571,874,480 cpu_atom/cycles/ (0.10%)
134,732,064,800 cpu_core/cycles/ (99.90%)
75,889,748,906 cpu_atom/instructions/ # 0.77 insn per cycle (0.10%)
159,098,987,713 cpu_core/instructions/ # 1.18 insn per cycle (99.90%)
30,443,258 cpu_atom/cache-misses/ (0.10%)
3,155,528 cpu_core/cache-misses/ (99.90%)
15,003,063,317 cpu_atom/branches/ (0.10%)
31,479,765,962 cpu_core/branches/ (99.90%)
149,091,165 cpu_atom/branch-misses/ # 0.99% of all branches (0.10%)
195,562,861 cpu_core/branch-misses/ # 0.62% of all branches (99.90%)
1,138 context-switches
37 cpu-migrations
33.004738330 seconds time elapsed
```
### FlameGraph
testing commands:
```bash
sudo perf record -F 199 -g -p $(pidof oi) -- sleep 30
sudo perf script | stackcollapse-perf.pl | flamegraph.pl > oi.svg
```
outcome:
oi.svg
commands:
```bash
sudo perf record -F 199 --call-graph dwarf,16384 -p $(pidof oi) -- sleep 30
sudo perf script | stackcollapse-perf.pl | flamegraph.pl > oi_dwarf.svg
```
outcome:
oi_dwarf.svg
### syscall-cost check
```bash
sudo strace -ff -C -p $(pidof oi) -o /tmp/oi.strace
# run 1530s under load, then Ctrl+C
tail -n +1 /tmp/oi.strace.*
```
## More real setup
traffic goes through real kernel routing + 2 TCP legs
Create namespaces + veth links:
```bash
sudo ip netns add ns_client
sudo ip netns add ns_server
sudo ip link add veth_c type veth peer name veth_c_ns
sudo ip link set veth_c_ns netns ns_client
sudo ip link add veth_s type veth peer name veth_s_ns
sudo ip link set veth_s_ns netns ns_server
sudo ip addr add 10.0.1.1/24 dev veth_c
sudo ip link set veth_c up
sudo ip addr add 10.0.0.1/24 dev veth_s
sudo ip link set veth_s up
sudo ip netns exec ns_client ip addr add 10.0.1.2/24 dev veth_c_ns
sudo ip netns exec ns_client ip link set veth_c_ns up
sudo ip netns exec ns_client ip link set lo up
sudo ip netns exec ns_server ip addr add 10.0.0.2/24 dev veth_s_ns
sudo ip netns exec ns_server ip link set veth_s_ns up
sudo ip netns exec ns_server ip link set lo up
sudo sysctl -w net.ipv4.ip_forward=1
```
Config to force redirect path:
```yaml
10.0.1.1 9000 10.0.0.2 9001
```
Start backend server in ns_server:
```bash
sudo ip netns exec ns_server iperf3 -s -p 9001
```
Run client in ns_client → forwarder → backend:
```bash
sudo ip netns exec ns_client iperf3 -c 10.0.1.1 -p 9000 -t 30 -P 8
```
perf report:
```text
sudo perf stat -p $(pidof oi) -e cycles,instructions,cache-misses,branches,branch-misses,context-switches,cpu-migrations -- sleep 33
Performance counter stats for process id '209785':
113,810,599,893 cpu_atom/cycles/ (0.11%)
164,681,878,450 cpu_core/cycles/ (99.89%)
102,575,167,734 cpu_atom/instructions/ # 0.90 insn per cycle (0.11%)
237,094,207,911 cpu_core/instructions/ # 1.44 insn per cycle (99.89%)
33,093,338 cpu_atom/cache-misses/ (0.11%)
5,381,441 cpu_core/cache-misses/ (99.89%)
20,012,975,873 cpu_atom/branches/ (0.11%)
46,120,077,111 cpu_core/branches/ (99.89%)
211,767,555 cpu_atom/branch-misses/ # 1.06% of all branches (0.11%)
245,969,685 cpu_core/branch-misses/ # 0.53% of all branches (99.89%)
1,686 context-switches
150 cpu-migrations
33.004363800 seconds time elapsed
```
flamegraph
### Add latency + small-packet tests
netperf (request/response)
Start netserver in backend namespace:
```bash
sudo ip netns exec ns_server netserver -p 9001
```
Run TCP_RR against forwarded port:
```bash
sudo ip netns exec ns_client netperf -H 10.0.1.1 -p 9000 -t TCP_RR -l 30 -- -r 32,32
```
## After opt
Here, we changed future_lite::io 8KiB buffer to a customized 16KiB buffer. (To avoid conflict, I changed binary name to oiopt).
```rust
async fn pump(mut r: TcpStream, mut w: TcpStream) -> io::Result<u64> {
// let's try 16KiB instead of future_lite::io 8KiB
// and do a profiling to see the outcome
let mut buf = vec![0u8; 16 * 1024];
let mut total = 0u64;
loop {
let n = r.read(&mut buf).await?;
if n == 0 {
// EOF: send FIN to peer
let _ = w.shutdown(Shutdown::Write);
break;
}
w.write_all(&buf[0..n]).await?;
total += n as u64;
}
Ok(total)
}
// And change the function call in handle_tcp_connection
let client_to_server = pump(client_stream.clone(), server_stream.clone());
let server_to_client = pump(server_stream, client_stream);
```
### outcomes
Still with `sudo ip netns exec ns_client iperf3 -c 10.0.1.1 -p 9000 -t 30 -P 8`
perf stat:
```text
sudo perf stat -p $(pidof oiopt) -e cycles,instructions,cache-misses,branches,branch-misses,context-switches,cpu-migrations -- sleep 33
Performance counter stats for process id '883435':
118,960,667,431 cpu_atom/cycles/ (0.05%)
131,934,369,110 cpu_core/cycles/ (99.95%)
100,530,466,140 cpu_atom/instructions/ # 0.85 insn per cycle (0.05%)
185,203,788,299 cpu_core/instructions/ # 1.40 insn per cycle (99.95%)
11,027,490 cpu_atom/cache-misses/ (0.05%)
2,123,369 cpu_core/cache-misses/ (99.95%)
19,641,945,774 cpu_atom/branches/ (0.05%)
36,245,438,057 cpu_core/branches/ (99.95%)
214,098,497 cpu_atom/branch-misses/ # 1.09% of all branches (0.05%)
179,848,095 cpu_core/branch-misses/ # 0.50% of all branches (99.95%)
2,308 context-switches
31 cpu-migrations
33.004555878 seconds time elapsed
```
system call check:
```bash
sudo timeout 30s strace -c -f -p $(pidof oiopt)
```
output:
```text
strace: Process 883435 attached with 4 threads
strace: Process 883438 detached
strace: Process 883437 detached
strace: Process 883436 detached
strace: Process 883435 detached
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
57.80 14.590016 442121 33 epoll_wait
28.84 7.279883 4 1771146 sendto
13.33 3.363882 1 1771212 48 recvfrom
0.02 0.003843 61 62 44 futex
0.01 0.001947 12 159 epoll_ctl
0.00 0.000894 99 9 9 connect
0.00 0.000620 34 18 9 accept4
0.00 0.000503 14 34 timerfd_settime
0.00 0.000446 13 33 33 read
0.00 0.000271 15 18 ioctl
0.00 0.000189 21 9 write
0.00 0.000176 19 9 socket
0.00 0.000099 11 9 getsockopt
0.00 0.000079 4 18 shutdown
0.00 0.000049 2 18 close
------ ----------- ----------- --------- --------- ----------------
100.00 25.242897 7 3542787 143 total
```
## Further tests to explain why this huge
Changed 16KiB buffer to 64KiB, and named the binary to oiopt64
iperf3 throughput under `-P 8`, highest 54.1Gbits/sec, other threads are much higher than before(16KiB buffer)
perf stat:
```text
sudo perf stat -p $(pidof oiopt64) -e cycles,instructions,cache-misses,branches,branch-misses,context-switches,cpu-migrations -- sleep 33
Performance counter stats for process id '893123':
120,859,810,675 cpu_atom/cycles/ (0.15%)
134,735,934,329 cpu_core/cycles/ (99.85%)
79,946,979,880 cpu_atom/instructions/ # 0.66 insn per cycle (0.15%)
127,036,644,759 cpu_core/instructions/ # 0.94 insn per cycle (99.85%)
24,713,474 cpu_atom/cache-misses/ (0.15%)
9,604,449 cpu_core/cache-misses/ (99.85%)
15,584,074,530 cpu_atom/branches/ (0.15%)
24,796,180,117 cpu_core/branches/ (99.85%)
175,778,825 cpu_atom/branch-misses/ # 1.13% of all branches (0.15%)
135,067,353 cpu_core/branch-misses/ # 0.54% of all branches (99.85%)
1,519 context-switches
50 cpu-migrations
33.006529572 seconds time elapsed
```
system call check:
```bash
sudo timeout 30s strace -c -f -p $(pidof oiopt64)
```
output:
```text
strace: Process 893123 attached with 4 threads
strace: Process 893126 detached
strace: Process 893125 detached
strace: Process 893124 detached
strace: Process 893123 detached
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
54.56 18.079500 463576 39 epoll_wait
27.91 9.249443 7 1294854 2 sendto
17.49 5.796927 4 1294919 51 recvfrom
0.01 0.003778 50 75 49 futex
0.01 0.002188 12 175 epoll_ctl
0.00 0.000747 83 9 9 connect
0.00 0.000714 17 40 timerfd_settime
0.00 0.000510 13 39 38 read
0.00 0.000452 25 18 9 accept4
0.00 0.000310 17 18 ioctl
0.00 0.000232 23 10 write
0.00 0.000200 22 9 socket
0.00 0.000183 20 9 getsockopt
0.00 0.000100 5 18 shutdown
0.00 0.000053 2 18 close
0.00 0.000020 20 1 mprotect
0.00 0.000015 15 1 sched_yield
0.00 0.000005 5 1 madvise
------ ----------- ----------- --------- --------- ----------------
100.00 33.135377 12 2590253 158 total
```
### Cleanup:
```bash
sudo ip netns del ns_client
sudo ip netns del ns_server
sudo ip link del veth_c
sudo ip link del veth_s
```

View File

@@ -0,0 +1,475 @@
---
title: Ace Profiling Attorney - The Case of the Missing Gbits
categories: [Programming, Profiling]
tags: [Rust, kernel, networking]
---
> **Disclaimer:** This is not a language-war post. No “X vs Y”.
> This is a profiling detective story about my Rust TCP forwarder [`oi`](https://github.com/DaZuo0122/oxidinetd).
---
## 0) Prologue — The Courthouse Lobby
> **Me:** I wrote a Rust TCP port forwarder. It works. It forwards.
>
> **Inner Prosecutor (Phoenix voice):** *Hold it!* “Works” is not a metric. How fast?
>
> **Me:** Not fast enough under load.
>
> **Inner Prosecutor:** *Objection!* “Not fast enough” is an emotion. Bring evidence.
>
> **Me:** Fine. Ill bring **perf**, **strace**, and a **flamegraph**.
>
> **Inner Prosecutor:** Good. This court accepts only facts.
## 1) The Crime Scene — Setup & Reproduction
**Me:** Single machine, Debian 13. No WAN noise, no tunnel bottlenecks.
**Inner Prosecutor:** *Hold it!* If its “single machine”, how do you avoid loopback cheating?
**Me:** Network namespaces + veth. Local, repeatable, closer to real networking.
### Environment
- Debian 13
- Kernel: `6.12.48+deb13-amd64`
- Runtime: `smol`
- Test topology: `ns_client → oi (root ns) → ns_server` via veth
### Reproduction commands
**Exhibit A: Start backend server in `ns_server`**
```bash
sudo ip netns exec ns_server iperf3 -s -p 9001
````
**Exhibit B: Run client in `ns_client` through forwarder**
```bash
sudo ip netns exec ns_client iperf3 -c 10.0.1.1 -p 9000 -t 30 -P 8
```
**Inner Prosecutor:** *Hold it!* Why `-P 8`?
**Me:** Because a forwarder can look fine in `-P 1` and fall apart when syscall pressure scales.
**Inner Prosecutor:** …Acceptable.
---
## 2) The Suspects — What Could Be Limiting Throughput?
**Me:** Four suspects.
1. **CPU bound** (pure compute wall)
2. **Kernel TCP stack bound** (send/recv path, skb, softirq, netfilter/conntrack)
3. **Syscall-rate wall** (too many `sendto/recvfrom` per byte)
4. **Runtime scheduling / contention** (wake storms, locks, futex)
**Inner Prosecutor:** *Objection!* Thats too broad. Narrow it down.
**Me:** Thats what the tools are for.
---
## 3) Evidence #1 — `perf stat` (The Macro View)
**Me:** First I ask: are we burning CPU, thrashing schedulers, or stalling on memory?
**Command:**
```bash
sudo perf stat -p $(pidof oi) -e \
cycles,instructions,cache-misses,branches,branch-misses,context-switches,cpu-migrations \
-- sleep 33
```
**What Im looking for:**
* Huge `context-switches` → runtime thrash / lock contention
* Huge `cpu-migrations` → unstable scheduling
* Very low IPC + huge cache misses → memory stalls
* Otherwise: likely syscall/kernel path
Output:
```text
Performance counter stats for process id '209785':
113,810,599,893 cpu_atom/cycles/ (0.11%)
164,681,878,450 cpu_core/cycles/ (99.89%)
102,575,167,734 cpu_atom/instructions/ # 0.90 insn per cycle (0.11%)
237,094,207,911 cpu_core/instructions/ # 1.44 insn per cycle (99.89%)
33,093,338 cpu_atom/cache-misses/ (0.11%)
5,381,441 cpu_core/cache-misses/ (99.89%)
20,012,975,873 cpu_atom/branches/ (0.11%)
46,120,077,111 cpu_core/branches/ (99.89%)
211,767,555 cpu_atom/branch-misses/ # 1.06% of all branches (0.11%)
245,969,685 cpu_core/branch-misses/ # 0.53% of all branches (99.89%)
1,686 context-switches
150 cpu-migrations
33.004363800 seconds time elapsed
```
**Low context switching**:
- context-switches: 1,686 over ~33s → ~51 switches/sec
- cpu-migrations: 150 over ~33s → ~4.5/s → very stable CPU placement
**CPU is working hard**:
- 237,094,207,911 cpu_core instructions
- IPC: 1.44 (instructions per cycle) → not lock-bound or stalling badly
**Clean cache, branch metrics**:
- cache-misses: ~3.1M (tiny compared to the instruction count)
- branch-misses: 0.62%
**Inner Prosecutor:** *Hold it!* You didnt show the numbers.
**Me:** Patience. The next exhibit makes the culprit confess.
---
## 4) Evidence #2 — `strace -c` (The Confession: Syscall Composition)
**Me:** Next: “What syscalls are we paying for?”
**Command:**
```bash
sudo timeout 30s strace -c -f -p $(pidof oi)
```
**What I expect if this is a forwarding wall:**
* `sendto` and `recvfrom` dominate calls
* call counts in the millions
Output (simplified):
```text
sendto 2,190,751 calls 4.146799s (57.6%)
recvfrom 2,190,763 calls 3.052340s (42.4%)
total syscall time: 7.200789s
```
(A) **100% syscall/copy dominated:**
- Almost all traced time is inside:
- sendto() (TCP send)
- recvfrom() (TCP recv)
(B) **syscall rate is massive**
- Total send+recv calls:
- ~4,381,500 syscalls in ~32s
- → ~137k `sendto` per sec + ~137k `recvfrom` per sec
- → ~274k syscalls/sec total
**Inner Prosecutor:** *Objection!* Syscalls alone dont prove the bottleneck.
**Me:** True. So I brought a witness.
---
## 5) Evidence #3 — FlameGraph (The Witness)
**Me:** The flamegraph doesnt lie. It testifies where cycles go.
**Commands:**
```bash
sudo perf record -F 199 --call-graph dwarf,16384 -p $(pidof oi) -- sleep 30
sudo perf script | stackcollapse-perf.pl | flamegraph.pl > oi.svg
```
**What the flamegraph showed (described, not embedded):**
* The widest towers were kernel TCP send/recv paths:
* `__x64_sys_sendto``tcp_sendmsg_locked``tcp_write_xmit` → ...
* `__x64_sys_recvfrom``tcp_recvmsg` → ...
* My userspace frames existed, but were comparatively thin.
* The call chain still pointed into my forwarding implementation.
**Inner Prosecutor:** *Hold it!* So youre saying… the kernel is doing the heavy lifting?
**Me:** Exactly. Which means my job is to **stop annoying the kernel** with too many tiny operations.
---
## 6) The Real Culprit — A “Perfectly Reasonable” Copy Loop
**Me:** Heres the original relay code. Looks clean, right?
```rust
let client_to_server = io::copy(client_stream.clone(), server_stream.clone());
let server_to_client = io::copy(server_stream, client_stream);
futures_lite::future::try_zip(client_to_server, server_to_client).await?;
```
**Inner Prosecutor:** *Objection!* This is idiomatic and correct.
**Me:** Yes. Thats why its dangerous.
**Key detail:** `futures_lite::io::copy` uses a small internal buffer (~8KiB in practice).
Small buffer → more iterations → more syscalls → more overhead.
If a forwarder is syscall-rate bound, this becomes a ceiling.
---
## 7) The First Breakthrough — Replace `io::copy` with `pump()`
**Me:** I wrote a manual pump loop:
* allocate a buffer once
* `read()` into it
* `write_all()` out
* on EOF: `shutdown(Write)` to propagate half-close
```rust
async fn pump(mut r: TcpStream, mut w: TcpStream, buf_sz: usize) -> io::Result<u64> {
let mut buf = vec![0u8; buf_sz];
let mut total = 0u64;
loop {
let n = r.read(&mut buf).await?;
if n == 0 {
let _ = w.shutdown(std::net::Shutdown::Write);
break;
}
w.write_all(&buf[..n]).await?;
total += n as u64;
}
Ok(total)
}
```
Run both directions:
```rust
let c2s = pump(client_stream.clone(), server_stream.clone(), BUF);
let s2c = pump(server_stream, client_stream, BUF);
try_zip(c2s, s2c).await?;
```
**Inner Prosecutor:** *Hold it!* Thats just a loop. How does that win?
**Me:** Not the loop. The **bytes per syscall**.
---
### 8) Exhibit C — The Numbers (8KiB → 16KiB → 64KiB)
### Baseline: ~8KiB (generic copy helper)
Throughput:
```text
17.8 Gbit/s
```
**Inner Prosecutor:** *Objection!* Thats your “crime scene” number?
**Me:** Yes. Now watch what happens when the kernel stops getting spammed.
### Pump + 16KiB buffer
Throughput:
```text
28.6 Gbit/s
```
`strace -c` showed `sendto/recvfrom` call count dropped:
```text
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
57.80 14.590016 442121 33 epoll_wait
28.84 7.279883 4 1771146 sendto
13.33 3.363882 1 1771212 48 recvfrom
0.02 0.003843 61 62 44 futex
0.01 0.001947 12 159 epoll_ctl
...
------ ----------- ----------- --------- --------- ----------------
100.00 25.242897 7 3542787 143 total
```
**Inner Prosecutor:** *Hold it!* Thats already big. But you claim theres more?
**Me:** Oh, theres more.
### Pump + 64KiB buffer
Throughput:
```text
54.1 Gbit/s (best observed)
```
`perf stat` output:
```text
Performance counter stats for process id '893123':
120,859,810,675 cpu_atom/cycles/ (0.15%)
134,735,934,329 cpu_core/cycles/ (99.85%)
79,946,979,880 cpu_atom/instructions/ # 0.66 insn per cycle (0.15%)
127,036,644,759 cpu_core/instructions/ # 0.94 insn per cycle (99.85%)
24,713,474 cpu_atom/cache-misses/ (0.15%)
9,604,449 cpu_core/cache-misses/ (99.85%)
15,584,074,530 cpu_atom/branches/ (0.15%)
24,796,180,117 cpu_core/branches/ (99.85%)
175,778,825 cpu_atom/branch-misses/ # 1.13% of all branches (0.15%)
135,067,353 cpu_core/branch-misses/ # 0.54% of all branches (99.85%)
1,519 context-switches
50 cpu-migrations
33.006529572 seconds time elapsed
```
`strace -c` output:
```text
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
54.56 18.079500 463576 39 epoll_wait
27.91 9.249443 7 1294854 2 sendto
17.49 5.796927 4 1294919 51 recvfrom
...
------ ----------- ----------- --------- --------- ----------------
100.00 33.135377 12 2590253 158 total
```
**Inner Prosecutor:** *OBJECTION!* `epoll_wait` is eating the time. Thats the bottleneck!
**Me:** Nice try. Thats a classic trap.
---
## 9) Cross-Examination — The `epoll_wait` Trap
**Me:** `strace -c` measures time spent *inside syscalls*, including time spent **blocked**.
In async runtimes:
* One thread can sit in `epoll_wait(timeout=...)`
* Other threads do `sendto/recvfrom`
* `strace` charges the blocking time to `epoll_wait`
So `epoll_wait` dominating **does not** mean “epoll is slow”.
It often means “one thread is waiting while others work”.
**What matters here:**
* `sendto` / `recvfrom` call counts
* and how they change with buffer size
---
## 10) Final Explanation — Why 64KiB Causes a “Nonlinear” Jump
**Inner Prosecutor:** *Hold it!* You only reduced syscall calls by ~some percent. How do you nearly triple throughput?
**Me:** Because syscall walls are **nonlinear**.
A forwarders throughput is approximately:
> **Throughput ≈ bytes_per_syscall_pair × syscall_pairs_per_second**
If youre syscall-rate limited, increasing `bytes_per_syscall_pair` pushes you past a threshold where:
* socket buffers stay fuller
* the TCP window is better utilized
* each stream spends less time in per-chunk bookkeeping
* concurrency (`-P 8`) stops fighting overhead and starts helping
Once you cross that threshold, throughput can jump until the next ceiling (kernel TCP, memory bandwidth, iperf itself).
Thats why a “small” change can create a big effect.
---
## 11. Trade-offs: buffer size is not free
**Inner Prosecutor:** *Objection!* Bigger buffers waste memory!
**Me:** Sustained.
A forwarder allocates **two buffers per connection** (one per direction).
So for 64KiB:
* ~128KiB per connection (just for relay buffers)
* plus runtime + socket buffers
Thats fine for “few heavy streams”, but it matters if you handle thousands of concurrent connections.
In practice, the right move is:
* choose a good default (64KiB is common)
* make it configurable
* consider buffer pooling if connection churn is heavy
---
## Epilogue — Case Closed (for now)
**Inner Prosecutor:** So the culprit was…
**Me:** A perfectly reasonable helper with a default buffer size I didnt question.
**Inner Prosecutor:** And the lesson?
**Me:** Dont guess. Ask sharp questions. Use the tools. Let the system testify.
> **Verdict:** Guilty of “too many syscalls per byte.”
>
> **Sentence:** 64KiB buffers and a better relay loop.
---
## Ending
This was a good reminder that performance work is not guessing — its a dialogue with the system:
1. Describe the situation
2. Ask sharp questions
3. Use tools to confirm
4. Explain the results using low-level knowledge
5. Make one change
6. Re-measure
And the funniest part: the “clean” one-liner `io::copy` was correct, but its defaults were hiding a performance policy I didnt want.
> **Inner Prosecutor:** “Case closed?”
>
> **Me:** “For now. Next case: buffer pooling, socket buffer tuning, and maybe a Linux-only `splice(2)` fast path — carefully, behind a safe wrapper.”
---