Reference Paper

This commit is contained in:
Hongyu Yan
2026-01-22 16:08:52 +08:00
parent 86852cbbbe
commit 2208d85d80
56 changed files with 371 additions and 3 deletions

View File

@@ -0,0 +1,9 @@
@misc{rasul2021autoregressivedenoisingdiffusionmodels,
title={Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting},
author={Kashif Rasul and Calvin Seward and Ingmar Schuster and Roland Vollgraf},
year={2021},
eprint={2101.12072},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2101.12072},
}

View File

@@ -0,0 +1,9 @@
@misc{tashiro2021csdiconditionalscorebaseddiffusion,
title={CSDI Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation},
author={Yusuke Tashiro and Jiaming Song and Yang Song and Stefano Ermon},
year={2021},
eprint={2107.03502},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={httpsarxiv.orgabs2107.03502},
}

View File

@@ -0,0 +1,11 @@
@inproceedings{NEURIPS2020_4c5bcfec,
author = {Ho, Jonathan and Jain, Ajay and Abbeel, Pieter},
booktitle = {Advances in Neural Information Processing Systems},
editor = {H. Larochelle and M. Ranzato and R. Hadsell and M.F. Balcan and H. Lin},
pages = {6840--6851},
publisher = {Curran Associates, Inc.},
title = {Denoising Diffusion Probabilistic Models},
url = {https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf},
volume = {33},
year = {2020}
}

View File

@@ -0,0 +1,9 @@
@misc{wen2024diffstgprobabilisticspatiotemporalgraph,
title={DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models},
author={Haomin Wen and Youfang Lin and Yutong Xia and Huaiyu Wan and Qingsong Wen and Roger Zimmermann and Yuxuan Liang},
year={2024},
eprint={2301.13629},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2301.13629},
}

View File

@@ -0,0 +1,9 @@
@misc{kong2021diffwaveversatilediffusionmodel,
title={DiffWave: A Versatile Diffusion Model for Audio Synthesis},
author={Zhifeng Kong and Wei Ping and Jiaji Huang and Kexin Zhao and Bryan Catanzaro},
year={2021},
eprint={2009.09761},
archivePrefix={arXiv},
primaryClass={eess.AS},
url={https://arxiv.org/abs/2009.09761},
}

View File

@@ -0,0 +1,22 @@
扩散模型DDPM/Score用于时间序列/时空建模(最直接支撑你“用 diffusion 生成包序列”)
Ho, Jain, Abbeel. Denoising Diffusion Probabilistic Models (DDPM). NeurIPS 2020.
用途:扩散模型基本形式(前向加噪、反向去噪、预测噪声训练)。你方法部分的扩散理论根引用。
Song et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021.
用途score-based diffusion 的更一般表述;如果你未来要做连续时间(时间间隔/抖动)的建模,这条线很有用。
Rasul et al. Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting. ICML 2021.
用途:多变量时间序列的扩散建模;对应你“多个(设备,寄存器)序列”的联合分布生成。
Tashiro et al. CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation. NeurIPS 2021.
用途条件扩散conditioning注入方式很适合你把设备嵌入/寄存器语义/主从角色/工艺状态作为条件,约束生成。
Liu et al. PriSTI: A Conditional Diffusion Framework for Spatiotemporal Imputation. ICDE 2023.
用途:时空条件扩散框架;你把“空间”换成(设备,寄存器)二部图/异构图,“时间”换成轮询/会话位置,结构很贴近。
Wen et al. DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models. ACM SIGSPATIAL 2023.
用途:扩散 + 时空图;你做(设备,寄存器)图上的生成(而不是预测)时,可借鉴其图特征融入去噪网络的方式。
Kong et al. DiffWave: A Versatile Diffusion Model for Audio Synthesis. ICLR 2021.
用途:一维信号生成(类似“时间间隔序列”“值序列”);其 WaveNet/UNet 类去噪骨架对工业轮询类高频序列也很参考。

View File

@@ -0,0 +1,9 @@
@misc{liu2023pristiconditionaldiffusionframework,
title={PriSTI: A Conditional Diffusion Framework for Spatiotemporal Imputation},
author={Mingzhe Liu and Han Huang and Hao Feng and Leilei Sun and Bowen Du and Yanjie Fu},
year={2023},
eprint={2302.09746},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2302.09746},
}

View File

@@ -0,0 +1,9 @@
@misc{song2021scorebasedgenerativemodelingstochastic,
title={Score-Based Generative Modeling through Stochastic Differential Equations},
author={Yang Song and Jascha Sohl-Dickstein and Diederik P. Kingma and Abhishek Kumar and Stefano Ermon and Ben Poole},
year={2021},
eprint={2011.13456},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2011.13456},
}