Reference Paper

This commit is contained in:
Hongyu Yan
2026-01-22 16:08:52 +08:00
parent 86852cbbbe
commit 2208d85d80
56 changed files with 371 additions and 3 deletions

View File

@@ -0,0 +1,9 @@
@misc{li2022diffusionlmimprovescontrollabletext,
title={Diffusion-LM Improves Controllable Text Generation},
author={Xiang Lisa Li and John Thickstun and Ishaan Gulrajani and Percy Liang and Tatsunori B. Hashimoto},
year={2022},
eprint={2205.14217},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={httpsarxiv.orgabs2205.14217},
}

View File

@@ -0,0 +1,17 @@
离散/混合变量扩散(解决 Modbus 的功能码/地址等离散字段)
你是“语义级生成”:至少包含
离散Function Code、可选异常码、寄存器地址/地址簇、读写长度
连续/整数寄存器值、时间间隔inter-arrival
这类“混合类型生成”往往要引用离散扩散或 embedding trick。
Austin et al. Structured Denoising Diffusion Models in Discrete State-Spaces (D3PM). NeurIPS 2021.
用途:离散状态空间扩散;功能码/异常码/地址簇token可以用 D3PM 直接扩散生成。
Li et al. Diffusion-LM Improves Controllable Text Generation. NeurIPS 2022.
用途文本是离散序列生成你可将“PDU 字段序列/行为序列”类比为句子,并用其“可控生成”的讨论支撑“协议约束/场景约束”的必要性。
工程落地常见做法:
离散字段D3PM/Multinomial diffusion 或先 embedding 到连续空间再做高斯扩散;
连续字段:标准 DDPM
最后用一个 deterministic assemblerpymodbus/scapy组装 MBAP/PDU确保协议有效率接近 100%。

View File

@@ -0,0 +1,9 @@
@misc{austin2023structureddenoisingdiffusionmodels,
title={Structured Denoising Diffusion Models in Discrete State-Spaces},
author={Jacob Austin and Daniel D. Johnson and Jonathan Ho and Daniel Tarlow and Rianne van den Berg},
year={2023},
eprint={2107.03006},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2107.03006},
}