Add: Methodology section 12 references

This commit is contained in:
2026-02-01 11:46:16 +08:00
parent 0613edcf61
commit ace1130179

View File

@@ -1,27 +1,117 @@
@inproceedings{kour2014real, @inproceedings{vaswani2017attention,
title={Real-time segmentation of on-line handwritten arabic script}, title={Attention Is All You Need},
author={Kour, George and Saabne, Raid}, author={Vaswani, Ashish and Shazeer, Noam and Parmar, Niki and Uszkoreit, Jakob and Jones, Llion and Gomez, Aidan N and Kaiser, {\L}ukasz and Polosukhin, Illia},
booktitle={Frontiers in Handwriting Recognition (ICFHR), 2014 14th International Conference on}, booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
pages={417--422}, volume={30},
year={2014}, year={2017},
organization={IEEE} url={https://arxiv.org/abs/1706.03762}
} }
@inproceedings{kour2014fast, @inproceedings{ho2020denoising,
title={Fast classification of handwritten on-line Arabic characters}, title={Denoising Diffusion Probabilistic Models},
author={Kour, George and Saabne, Raid}, author={Ho, Jonathan and Jain, Ajay and Abbeel, Pieter},
booktitle={Soft Computing and Pattern Recognition (SoCPaR), 2014 6th International Conference of}, booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
pages={312--318}, volume={33},
year={2014}, pages={6840--6851},
organization={IEEE}, year={2020},
doi={10.1109/SOCPAR.2014.7008025} url={https://arxiv.org/abs/2006.11239}
} }
@inproceedings{keshet2016prediction, @inproceedings{austin2021structured,
title={Prediction-Based, Prioritized Market-Share Insight Extraction}, title={Structured Denoising Diffusion Models in Discrete State-Spaces},
author={Keshet, Renato and Maor, Alina and Kour, George}, author={Austin, Jacob and Johnson, Daniel D and Ho, Jonathan and Tarlow, Daniel and van den Berg, Rianne},
booktitle={Advanced Data Mining and Applications: 12th International Conference, ADMA 2016, Gold Coast, QLD, Australia, December 12-15, 2016, Proceedings 12}, booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
pages={81--94}, volume={34},
year={2016}, pages={17981--17993},
organization={Springer} year={2021},
url={https://arxiv.org/abs/2107.03006}
}
@article{shi2024simplified,
title={Simplified and Generalized Masked Diffusion for Discrete Data},
author={Shi, Juntong and Han, Ke and Wang, Zinan and Doucet, Arnaud and Titsias, Michalis K},
journal={arXiv preprint},
eprint={2406.04329},
archivePrefix={arXiv},
year={2024},
url={https://arxiv.org/abs/2406.04329}
}
@inproceedings{hang2023efficient,
title={Efficient Diffusion Training via Min-SNR Weighting Strategy},
author={Hang, Tianyu and Gu, Shuyang and Li, Chen and Bao, Jianmin and Chen, Dong and Hu, Han and Geng, Xin and Guo, Boxin},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
pages={7407--7417},
year={2023},
doi={10.1109/ICCV51070.2023.00702},
url={https://arxiv.org/abs/2303.09556}
}
@inproceedings{kollovieh2023tsdiff,
title={Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting},
author={Kollovieh, Marcel and Ansari, Abdul Fatir and Bohlke-Schneider, Michael and Fatir Ansari, Abdul and Salinas, David},
booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
volume={36},
year={2023},
url={https://arxiv.org/abs/2307.11494}
}
@article{sikder2023transfusion,
title={TransFusion: Generating Long, High Fidelity Time Series using Diffusion Models with Transformers},
author={Sikder, M. F. and Ramachandranpillai, R. and Heintz, F.},
journal={arXiv preprint},
eprint={2307.12667},
archivePrefix={arXiv},
year={2023},
url={https://arxiv.org/abs/2307.12667}
}
@inproceedings{song2021score,
title={Score-Based Generative Modeling through Stochastic Differential Equations},
author={Song, Yang and Sohl-Dickstein, Jascha and Kingma, Diederik P and Kumar, Abhishek and Ermon, Stefano and Poole, Ben},
booktitle={International Conference on Learning Representations (ICLR)},
year={2021},
url={https://arxiv.org/abs/2011.13456}
}
@inproceedings{shi2025tabdiff,
title={TabDiff: A Mixed-type Diffusion Model for Tabular Data Generation},
author={Shi, Juntong and Xu, Minkai and Hua, Harper and Zhang, Hengrui and Ermon, Stefano and Leskovec, Jure},
booktitle={International Conference on Learning Representations (ICLR)},
year={2025},
url={https://arxiv.org/abs/2410.20626}
}
@inproceedings{yuan2025ctu,
title={CTU-DDPM: Generating Industrial Control System Time-Series Data with a CNN-Transformer Hybrid Diffusion Model},
author={Yuan, Yusong and Sha, Yun and Zhao, Wei and Zhang, Kun},
booktitle={Proceedings of the 2025 International Symposium on Artificial Intelligence and Computational Social Sciences (ACM AICSS)},
pages={123--132},
year={2025},
doi={10.1145/3776759.3776845},
url={https://dl.acm.org/doi/10.1145/3776759.3776845}
}
@misc{sha2026ddpm,
title={DDPM Fusing Mamba and Adaptive Attention: An Augmentation Method for Industrial Control Systems Anomaly Data},
author={Sha, Yun and Yuan, Yusong and Wu, Yonghao and Zhao, Haidong},
year={2026},
month={jan},
note={SSRN Electronic Journal},
eprint={6055903},
archivePrefix={SSRN},
doi={10.2139/ssrn.6055903},
url={https://papers.ssrn.com/sol3/papers.cfm?abstract_id=6055903}
}
@techreport{nist2023sp80082,
title={Guide to Operational Technology (OT) Security},
author={{National Institute of Standards and Technology}},
institution={NIST},
type={Special Publication},
number={800-82 Rev. 3},
year={2023},
month={sep},
doi={10.6028/NIST.SP.800-82r3},
url={https://csrc.nist.gov/pubs/sp/800/82/r3/final}
} }