Files
internal-docs/papers/RefPaperByMarkyan04/Topic2 Protocol-aware generation & fuzzing/Intro.txt
2026-01-22 16:08:52 +08:00

17 lines
1.1 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
协议状态机/模糊测试/学习输入生成(支撑你“生成有效 request-response 交互序列”)
对 Modbus TCP 来说,“有效”不仅是字段合法,还包括:
request 与 response 配对
Transaction ID 一致/递增策略合理
功能码与地址范围一致(如 0x03 对 holding register 区间)
异常响应的触发条件合理
这些强约束往往在 fuzzing / protocol testing 文献里讨论得更系统。
Pham et al. AFLNet: A Greybox Fuzzer for Network Protocols. ICST 2019.
用途:面向网络协议的状态覆盖 fuzzing你可以借鉴其“状态反馈”思想把扩散生成器和协议栈反馈有效率/覆盖率)结合起来做强化。
She et al. NEUZZ: Efficient Fuzzing with Neural Networks. IEEE S&P 2019.
用途:神经网络引导 fuzzing 的代表作;可作为你未来“生成模型 + 反馈优化/引导采样”的相关工作支撑。
Godefroid, Peleg, Singh. Learn&Fuzz: Machine Learning for Input Fuzzing. ASE 2017.
用途:学习输入格式再生成;与你“语义级生成 + 确定性组装器”的理念一致(模型学语义,规则负责封包细节)。