Files
internal-docs/papers/Topic3 Diffusion for time series or spatiotemporal/Intro.txt
2026-01-26 00:18:00 +08:00

23 lines
1.8 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
扩散模型DDPM/Score用于时间序列/时空建模(最直接支撑你“用 diffusion 生成包序列”)
Ho, Jain, Abbeel. Denoising Diffusion Probabilistic Models (DDPM). NeurIPS 2020.
用途:扩散模型基本形式(前向加噪、反向去噪、预测噪声训练)。你方法部分的扩散理论根引用。
Song et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021.
用途score-based diffusion 的更一般表述;如果你未来要做连续时间(时间间隔/抖动)的建模,这条线很有用。
Rasul et al. Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting. ICML 2021.
用途:多变量时间序列的扩散建模;对应你“多个(设备,寄存器)序列”的联合分布生成。
Tashiro et al. CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation. NeurIPS 2021.
用途条件扩散conditioning注入方式很适合你把设备嵌入/寄存器语义/主从角色/工艺状态作为条件,约束生成。
Liu et al. PriSTI: A Conditional Diffusion Framework for Spatiotemporal Imputation. ICDE 2023.
用途:时空条件扩散框架;你把“空间”换成(设备,寄存器)二部图/异构图,“时间”换成轮询/会话位置,结构很贴近。
Wen et al. DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models. ACM SIGSPATIAL 2023.
用途:扩散 + 时空图;你做(设备,寄存器)图上的生成(而不是预测)时,可借鉴其图特征融入去噪网络的方式。
Kong et al. DiffWave: A Versatile Diffusion Model for Audio Synthesis. ICLR 2021.
用途:一维信号生成(类似“时间间隔序列”“值序列”);其 WaveNet/UNet 类去噪骨架对工业轮询类高频序列也很参考。