Files
mask-ddpm/example/prepare_data.py

61 lines
2.4 KiB
Python
Executable File

#!/usr/bin/env python3
"""Prepare vocab and normalization stats for HAI 21.03."""
import json
from pathlib import Path
from typing import Optional
from data_utils import compute_cont_stats, build_disc_stats, load_split, choose_cont_transforms
from platform_utils import safe_path, ensure_dir
BASE_DIR = Path(__file__).resolve().parent
REPO_DIR = BASE_DIR.parent.parent
DATA_GLOB = REPO_DIR / "dataset" / "hai" / "hai-21.03" / "train*.csv.gz"
SPLIT_PATH = BASE_DIR / "feature_split.json"
OUT_STATS = BASE_DIR / "results" / "cont_stats.json"
OUT_VOCAB = BASE_DIR / "results" / "disc_vocab.json"
def main(max_rows: Optional[int] = None):
split = load_split(safe_path(SPLIT_PATH))
time_col = split.get("time_column", "time")
cont_cols = [c for c in split["continuous"] if c != time_col]
disc_cols = [c for c in split["discrete"] if not c.startswith("attack") and c != time_col]
data_paths = sorted(Path(REPO_DIR / "dataset" / "hai" / "hai-21.03").glob("train*.csv.gz"))
if not data_paths:
raise SystemExit("no train files found under %s" % str(DATA_GLOB))
data_paths = [safe_path(p) for p in data_paths]
transforms, _ = choose_cont_transforms(data_paths, cont_cols, max_rows=max_rows)
cont_stats = compute_cont_stats(data_paths, cont_cols, max_rows=max_rows, transforms=transforms)
vocab, top_token = build_disc_stats(data_paths, disc_cols, max_rows=max_rows)
ensure_dir(OUT_STATS.parent)
with open(safe_path(OUT_STATS), "w", encoding="utf-8") as f:
json.dump(
{
"mean": cont_stats["mean"],
"std": cont_stats["std"],
"raw_mean": cont_stats["raw_mean"],
"raw_std": cont_stats["raw_std"],
"min": cont_stats["min"],
"max": cont_stats["max"],
"int_like": cont_stats["int_like"],
"max_decimals": cont_stats["max_decimals"],
"transform": cont_stats["transform"],
"skew": cont_stats["skew"],
"max_rows": cont_stats["max_rows"],
},
f,
indent=2,
)
with open(safe_path(OUT_VOCAB), "w", encoding="utf-8") as f:
json.dump({"vocab": vocab, "top_token": top_token, "max_rows": max_rows}, f, indent=2)
if __name__ == "__main__":
# Default: sample 50000 rows for speed. Set to None for full scan.
main(max_rows=50000)