2.0 KiB
2.0 KiB
Documentation Index
This folder tracks project decisions, experiments, and evolving ideas.
decisions.md: design/architecture changes and rationalesexperiments.md: experiment runs and resultsideas.md: future ideas and hypothesesarchitecture.md: system overview and module boundariesevaluation.md: evaluation protocol and metric usage
Conventions:
- Append new entries instead of overwriting old ones.
- Record exact config file and key overrides when possible.
- Keep metrics in the order: avg_ks / avg_jsd / avg_lag1_diff.
Tools:
example/diagnose_ks.pyfor per-feature KS + CDF plots.example/run_all.pyfor one-command full pipeline (train/export/eval/postprocess/diagnostics).example/run_all_full.pylegacy full pipeline runner.example/filtered_metrics.pyfor filtered KS after removing collapsed/outlier features.example/ranked_ks.pyfor ranked KS table + cumulative avg_ks if removing top features.example/evaluate_generated.pyfor full-reference metrics (now supports glob over all train*.csv.gz).example/program_stats.pyfor dwell/change/step stats on program-like features.example/controller_stats.pyfor controller saturation/change stats.example/actuator_stats.pyfor spike/dwell stats on actuators.example/pv_stats.pyfor PV quantile/tail stats.example/aux_stats.pyfor aux signal mean/std/lag1 stats.example/postprocess_types.pyfor type-based postprocessing (Type1/2/3/5/6). Notes:- If
use_quantile_transformis enabled, runprepare_data.pywithfull_stats: trueto build quantile tables.
Current status (high level):
- Two-stage pipeline (GRU trend + diffusion residuals).
- Quantile transform + post-hoc calibration enabled for continuous features.
- KS evaluation uses full reference glob and tie-aware KS implementation.
- Type-based postprocess (empirical resample for Type1/2/3/5/6) used as a KS-lowering baseline.
- Latest model run (2026-01-27 21:22): avg_ks ~0.405 / avg_jsd ~0.038 / avg_lag1_diff ~0.145.