237 lines
7.6 KiB
Markdown
237 lines
7.6 KiB
Markdown
# Hybrid Diffusion for ICS Traffic (HAI 21.03) — Project Report
|
||
# 工业控制系统流量混合扩散生成(HAI 21.03)— 项目报告
|
||
|
||
## 1. Project Goal / 项目目标
|
||
Build a **hybrid diffusion-based generator** for ICS traffic features, focusing on **mixed continuous + discrete** feature sequences. The output is **feature-level sequences**, not raw packets. The generator should preserve:
|
||
- **Distributional fidelity** (continuous ranges + discrete frequencies)
|
||
- **Temporal consistency** (time correlation and sequence structure)
|
||
- **Field/logic consistency** for discrete protocol-like columns
|
||
|
||
构建一个用于 ICS 流量特征的**混合扩散生成模型**,处理**连续+离散混合特征序列**。输出为**特征级序列**而非原始报文。生成结果需要保持:
|
||
- **分布一致性**(连续值范围 + 离散频率)
|
||
- **时序一致性**(时间相关性与序列结构)
|
||
- **字段/逻辑一致性**(离散字段语义)
|
||
|
||
---
|
||
|
||
## 2. Data and Scope / 数据与范围
|
||
**Dataset used in current implementation:** HAI 21.03 (CSV feature traces).
|
||
|
||
**当前实现使用数据集:** HAI 21.03(CSV 特征序列)。
|
||
|
||
**Data path (default in config):**
|
||
- `dataset/hai/hai-21.03/train*.csv.gz`
|
||
|
||
**特征拆分(固定 schema):** `example/feature_split.json`
|
||
- Continuous features: sensor/process values
|
||
- Discrete features: binary/low-cardinality status/flag fields
|
||
- `time` is excluded from modeling
|
||
|
||
---
|
||
|
||
## 3. End-to-End Pipeline / 端到端流程
|
||
One command pipeline:
|
||
```
|
||
python example/run_all.py --device cuda
|
||
```
|
||
|
||
Pipeline stages:
|
||
1) **Prepare data** (`example/prepare_data.py`)
|
||
2) **Train temporal backbone** (`example/train.py`, stage 1)
|
||
3) **Train diffusion on residuals** (`example/train.py`, stage 2)
|
||
4) **Generate samples** (`example/export_samples.py`)
|
||
5) **Evaluate** (`example/evaluate_generated.py`)
|
||
|
||
一键流程对应:数据准备 → 时序骨干训练 → 残差扩散训练 → 采样导出 → 评估。
|
||
|
||
---
|
||
|
||
## 4. Technical Architecture / 技术架构
|
||
|
||
### 4.1 Hybrid Diffusion Model (Core) / 混合扩散模型(核心)
|
||
Defined in `example/hybrid_diffusion.py`.
|
||
|
||
**Inputs:**
|
||
- Continuous projection
|
||
- Discrete embeddings
|
||
- Time embedding (sinusoidal)
|
||
- Positional embedding (sequence index)
|
||
- Optional condition embedding (`file_id`)
|
||
|
||
**Backbone (configurable):**
|
||
- GRU (sequence modeling)
|
||
- Transformer encoder (self‑attention)
|
||
- Post LayerNorm + residual MLP
|
||
|
||
**Outputs:**
|
||
- Continuous head: predicts target (`eps` or `x0`)
|
||
- Discrete heads: logits per discrete column
|
||
|
||
**连续分支:** Gaussian diffusion
|
||
**离散分支:** Mask diffusion
|
||
|
||
---
|
||
|
||
### 4.2 Stage-1 Temporal Model (GRU) / 第一阶段时序模型(GRU)
|
||
A separate GRU models the **trend backbone** of continuous features. It is trained first using teacher forcing to predict the next step.
|
||
|
||
独立的 GRU 先学习连续特征的**趋势骨架**,使用 teacher forcing 进行逐步预测。
|
||
|
||
Trend definition:
|
||
```
|
||
trend = GRU(x)
|
||
residual = x - trend
|
||
```
|
||
|
||
---
|
||
|
||
## 5. Diffusion Formulations / 扩散形式
|
||
|
||
### 5.1 Continuous Diffusion / 连续扩散
|
||
Forward process on residuals:
|
||
```
|
||
r_t = sqrt(a_bar_t) * r + sqrt(1 - a_bar_t) * eps
|
||
```
|
||
|
||
Targets supported:
|
||
- **eps prediction**
|
||
- **x0 prediction** (default)
|
||
|
||
Current config:
|
||
```
|
||
"cont_target": "x0"
|
||
```
|
||
|
||
### 5.2 Discrete Diffusion / 离散扩散
|
||
Mask diffusion with cosine schedule:
|
||
```
|
||
p(t) = 0.5 * (1 - cos(pi * t / T))
|
||
```
|
||
Mask-only cross-entropy is computed on masked positions.
|
||
|
||
---
|
||
|
||
## 6. Loss Design / 损失设计
|
||
Total loss:
|
||
```
|
||
L = λ * L_cont + (1 − λ) * L_disc
|
||
```
|
||
|
||
### 6.1 Continuous Loss / 连续损失
|
||
- `eps` target: MSE(eps_pred, eps)
|
||
- `x0` target: MSE(x0_pred, x0)
|
||
- Optional inverse-variance weighting: `cont_loss_weighting = "inv_std"`
|
||
- Optional **SNR-weighted loss**: reweights MSE by SNR to stabilize diffusion training
|
||
|
||
### 6.2 Discrete Loss / 离散损失
|
||
Cross-entropy on masked positions only.
|
||
|
||
### 6.3 Temporal Loss / 时序损失
|
||
Stage‑1 GRU predicts next step:
|
||
```
|
||
L_temporal = MSE(pred_next, x[:,1:])
|
||
```
|
||
|
||
### 6.4 Residual Alignment Losses / 残差对齐损失
|
||
- **Quantile loss** on residuals to align distribution tails.
|
||
- **Residual mean/std penalty** to reduce drift and improve KS.
|
||
|
||
---
|
||
|
||
## 7. Data Processing / 数据处理
|
||
Defined in `example/data_utils.py` + `example/prepare_data.py`.
|
||
|
||
Key steps:
|
||
- Streaming mean/std/min/max + int-like detection
|
||
- Optional **log1p transform** for heavy-tailed continuous columns
|
||
- Discrete vocab + most frequent token
|
||
- Windowed batching with **shuffle buffer**
|
||
|
||
---
|
||
|
||
## 8. Sampling & Export / 采样与导出
|
||
Defined in:
|
||
- `example/sample.py`
|
||
- `example/export_samples.py`
|
||
|
||
Export process:
|
||
- Generate trend using temporal GRU
|
||
- Diffusion generates residuals
|
||
- Output: `trend + residual`
|
||
- De-normalize continuous values
|
||
- Clamp to observed min/max
|
||
- Restore discrete tokens from vocab
|
||
- Write to CSV
|
||
|
||
---
|
||
|
||
## 9. Evaluation / 评估指标
|
||
Defined in `example/evaluate_generated.py`.
|
||
|
||
Metrics (with reference):
|
||
- **KS statistic** (continuous distribution)
|
||
- **Quantile diffs** (q05/q25/q50/q75/q95)
|
||
- **Lag‑1 correlation diff** (temporal structure)
|
||
- **Discrete JSD** over vocab frequency
|
||
- **Invalid token counts**
|
||
|
||
**指标汇总与对比脚本:** `example/summary_metrics.py`
|
||
- 输出 avg_ks / avg_jsd / avg_lag1_diff
|
||
- 追加记录到 `example/results/metrics_history.csv`
|
||
- 如果存在上一次记录,输出 delta(新旧对比)
|
||
|
||
Recent run (user-reported, Windows):
|
||
- avg_ks 0.7096 / avg_jsd 0.03318 / avg_lag1_diff 0.18984
|
||
|
||
---
|
||
|
||
## 10. Automation / 自动化
|
||
`example/run_all.py` runs all stages with config-driven paths.
|
||
`example/run_compare.py` can run a baseline vs temporal config and compute metric deltas.
|
||
|
||
---
|
||
|
||
## 11. Key Engineering Decisions / 关键工程决策
|
||
- Mixed-type diffusion: continuous + discrete split
|
||
- Two-stage training: temporal backbone first, diffusion on residuals
|
||
- Switchable backbone: GRU vs Transformer encoder for the diffusion model
|
||
- Positional + time embeddings for stability
|
||
- Optional inverse-variance weighting for continuous loss
|
||
- Log1p transforms for heavy-tailed signals
|
||
|
||
---
|
||
|
||
## 12. Code Map (Key Files) / 代码索引
|
||
- Core model: `example/hybrid_diffusion.py`
|
||
- Training: `example/train.py`
|
||
- Temporal GRU: `example/hybrid_diffusion.py` (`TemporalGRUGenerator`)
|
||
- Data prep: `example/prepare_data.py`
|
||
- Data utilities: `example/data_utils.py`
|
||
- Sampling: `example/sample.py`
|
||
- Export: `example/export_samples.py`
|
||
- Evaluation: `example/evaluate_generated.py`
|
||
- Pipeline: `example/run_all.py`
|
||
- Config: `example/config.json`
|
||
|
||
---
|
||
|
||
## 13. Known Issues / Current Limitations / 已知问题
|
||
- KS may remain high → continuous distribution mismatch
|
||
- Lag‑1 may fluctuate → distribution vs temporal trade-off
|
||
- Continuous loss may dominate → needs careful weighting
|
||
- Transformer backbone may change stability; needs systematic comparison
|
||
|
||
---
|
||
|
||
## 14. Suggested Next Steps / 下一步建议
|
||
- Compare GRU vs Transformer backbone using `run_compare.py`
|
||
- Explore **v‑prediction** for continuous branch
|
||
- Strengthen discrete diffusion (e.g., D3PM-style transitions)
|
||
|
||
---
|
||
|
||
## 15. Summary / 总结
|
||
This project implements a **two-stage hybrid diffusion model** for ICS feature sequences: a GRU-based temporal backbone first models sequence trends, then diffusion learns residual corrections. The pipeline covers data prep, two-stage training, sampling, export, and evaluation. The main research challenge remains in balancing **distributional fidelity (KS)** and **temporal consistency (lag‑1)**.
|
||
|
||
本项目实现了**两阶段混合扩散模型**:先用 GRU 时序骨干学习趋势,再用扩散学习残差校正。系统包含完整训练与评估流程。主要挑战仍是**分布对齐(KS)与时序一致性(lag‑1)之间的平衡**。
|