2026-01-28 20:17:50 +08:00
2026-01-29 00:01:34 +08:00
2026-01-09 02:14:20 +08:00
2026-01-29 23:53:54 +08:00
2026-01-22 20:42:10 +08:00
2026-01-08 05:17:16 +08:00

Documentation Index

This folder tracks project decisions, experiments, and evolving ideas.

  • decisions.md: design/architecture changes and rationales
  • experiments.md: experiment runs and results
  • ideas.md: future ideas and hypotheses
  • architecture.md: system overview and module boundaries
  • evaluation.md: evaluation protocol and metric usage

Conventions:

  • Append new entries instead of overwriting old ones.
  • Record exact config file and key overrides when possible.
  • Keep metrics in the order: avg_ks / avg_jsd / avg_lag1_diff.

Tools:

  • example/diagnose_ks.py for per-feature KS + CDF plots.
  • example/run_all.py for one-command full pipeline (train/export/eval/postprocess/diagnostics).
  • example/run_all_full.py legacy full pipeline runner.
  • example/filtered_metrics.py for filtered KS after removing collapsed/outlier features.
  • example/ranked_ks.py for ranked KS table + cumulative avg_ks if removing top features.
  • example/evaluate_generated.py for full-reference metrics (now supports glob over all train*.csv.gz).
  • example/program_stats.py for dwell/change/step stats on program-like features.
  • example/controller_stats.py for controller saturation/change stats.
  • example/actuator_stats.py for spike/dwell stats on actuators.
  • example/pv_stats.py for PV quantile/tail stats.
  • example/aux_stats.py for aux signal mean/std/lag1 stats.
  • example/postprocess_types.py for type-based postprocessing (Type1/2/3/5/6). Notes:
  • If use_quantile_transform is enabled, run prepare_data.py with full_stats: true to build quantile tables.

Current status (high level):

  • Two-stage pipeline (GRU trend + diffusion residuals).
  • Quantile transform + post-hoc calibration enabled for continuous features.
  • KS evaluation uses full reference glob and tie-aware KS implementation.
  • Type-based postprocess (empirical resample for Type1/2/3/5/6) used as a KS-lowering baseline.
  • Latest model run (2026-01-27 21:22): avg_ks ~0.405 / avg_jsd ~0.038 / avg_lag1_diff ~0.145.
Description
No description provided
Readme 137 MiB
Languages
Python 100%