1.8 KiB
1.8 KiB
Architecture Overview
System Diagram (text)
+--------------------+
| Program Generator |
| (Type 1 setpoints) |
+---------+----------+
|
v
+-----------------------+
| Controller / Actuator |
| (Type 2/3 modules) |
+---------+-------------+
|
v
+----------------------------+
| Diffusion (Residuals) |
| - Continuous PVs |
| - Discrete mask diffusion |
+---------+------------------+
|
v
+-----------------------------+
| Post-processing |
| - Derived tags (Type 5) |
| - KS-only resample baseline |
+-----------------------------+
Core Components
- Stage‑1 Temporal GRU: learns trend for continuous features.
- Diffusion Backbone: Transformer (default) or GRU; predicts residuals + discrete logits.
- Post-hoc Calibration: optional quantile calibration to align 1D CDFs.
- KS-only Baseline: Type1/2/3/5/6 empirical resampling for rapid KS reduction (diagnostic; may hurt joint realism).
Feature-Type Split
- Type 1: Setpoints/demands → program generator
- Type 2: Controller outputs → small emulator / conditional head
- Type 3: Actuators/valves → spike‑and‑slab / dwell-time model
- Type 4: Process PVs (multi‑modal/heavy tail) → diffusion with conditioning
- Type 5: Derived tags → deterministic reconstruction (or empirical KS baseline)
- Type 6: Auxiliary/vibration → narrow-band AR/SSM or empirical KS baseline
Data Flow
- Input CSV → stats/vocab → normalized batches
- Trend GRU → residual diffusion → inverse transforms → export